Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data

使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法

基本信息

  • 批准号:
    9816009
  • 负责人:
  • 金额:
    $ 50.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-18 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

SUMMARY The modernization and standardization of clinical care information systems is creating large networks of linked electronic health records (EHR) that capture key treatments and select patient outcomes for millions of patients throughout the country. The observational data emerging from these systems provide an unparalleled opportunity to learn about the effectiveness of existing and novel treatments, and to monitor potential safety issues that may arise when interventions are used in broad patient populations. However, observational clinical data have exposures that are driven by many factors and therefore aggressive adjustment is needed to remove as much confounding bias as possible in order to make attribution regarding select exposures. The field of machine learning provides a powerful collection of data-driven approaches for performing flexible, thorough confounding adjustment, but performing reliable statistical inference is particularly challenging when these techniques are used as part of the analytic strategy. We propose to advance reproducible research methods by developing and illustrating novel targeted learning tools that leverage the flexibility of machine learning methods to detect and characterize health effect signals using large-scale EHR data. Specifically, we will first develop techniques for making efficient, statistically valid and robust inference for treatment effects using state-of-the-art machine learning tools. We will also develop online learning techniques to make such inference in the context of streaming EHR data. Methodological advances will enable us to formulate a formal, rigorous and practical framework for conducting continuous, effective and reliable surveillance for safety endpoints. Finally, we will develop statistical approaches for incorporating prior information -- including demographic, epidemiologic or pharmacodynamic knowledge, for example -- to improve health effect estimation and inference when the health outcome of interest is rare and the statistical problem is thus difficult, as often occurs in safety surveillance. The ultimate goal of the proposed research is to enable biomedical researchers and public health regulators to carefully monitor and protect the health of the public by allowing them to more effectively and more reliably detect critical health effect signals that may be contained in population-scale EHR data.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Carone其他文献

Marco Carone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Carone', 18)}}的其他基金

Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
  • 批准号:
    10463566
  • 财政年份:
    2019
  • 资助金额:
    $ 50.28万
  • 项目类别:
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
  • 批准号:
    9979940
  • 财政年份:
    2019
  • 资助金额:
    $ 50.28万
  • 项目类别:
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
  • 批准号:
    10645177
  • 财政年份:
    2019
  • 资助金额:
    $ 50.28万
  • 项目类别:
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
  • 批准号:
    10206237
  • 财政年份:
    2019
  • 资助金额:
    $ 50.28万
  • 项目类别:

相似海外基金

EPIC-Oxford: benefits and risks of plant-based diets
EPIC-Oxford:植物性饮食的好处和风险
  • 批准号:
    MR/Y013662/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.28万
  • 项目类别:
    Research Grant
HYDRA: Hydrogen Economy Benefits and Risks: Tools Development and Policies Implementation to Mitigate Possible Climate Impacts
HYDRA:氢经济的好处和风险:减轻可能的气候影响的工具开发和政策实施
  • 批准号:
    10089618
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
  • 项目类别:
    EU-Funded
Coldfish: potential benefits and risks of borealisation for fish stocks and ecosystems in a changing Arctic Ocean
冷鱼:北冰洋变化中鱼类种群和生态系统的北化的潜在好处和风险
  • 批准号:
    NE/R012520/1
  • 财政年份:
    2018
  • 资助金额:
    $ 50.28万
  • 项目类别:
    Research Grant
Coldfish: potential benefits and risks of borealisation for fish stocks and ecosystems in a changing Arctic Ocean
冷鱼:北冰洋变化中鱼类种群和生态系统的北化的潜在好处和风险
  • 批准号:
    NE/R012563/1
  • 财政年份:
    2018
  • 资助金额:
    $ 50.28万
  • 项目类别:
    Research Grant
The use of big data for social policy: benefits and risks
大数据在社会政策中的应用:好处和风险
  • 批准号:
    LA170100011
  • 财政年份:
    2017
  • 资助金额:
    $ 50.28万
  • 项目类别:
    Learned Academies Special Projects
Long-term Benefits and Risks of Bariatric Surgery in Integrated Care Systems
综合护理系统中减肥手术的长期益处和风险
  • 批准号:
    9329410
  • 财政年份:
    2015
  • 资助金额:
    $ 50.28万
  • 项目类别:
Long-term Benefits and Risks of Bariatric Surgery in Integrated Care Systems
综合护理系统中减肥手术的长期益处和风险
  • 批准号:
    9136837
  • 财政年份:
    2015
  • 资助金额:
    $ 50.28万
  • 项目类别:
Long-term Benefits and Risks of Bariatric Surgery in Integrated Care Systems
综合护理系统中减肥手术的长期益处和风险
  • 批准号:
    8940898
  • 财政年份:
    2015
  • 资助金额:
    $ 50.28万
  • 项目类别:
Characterizing and Communicating Uncertainty in the Assessment of Benefits and Risks of Pharmaceuticals: An IOM Workshop
描述和传达药品效益和风险评估中的不确定性:IOM 研讨会
  • 批准号:
    8996009
  • 财政年份:
    2015
  • 资助金额:
    $ 50.28万
  • 项目类别:
ADOLESCENT BARIATRICS ASSESSING HEALTH BENEFITS AND RISKS
青少年肥胖症患者评估健康益处和风险
  • 批准号:
    8356702
  • 财政年份:
    2010
  • 资助金额:
    $ 50.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了