Hamiltonian and Celestial Mechanics
哈密顿量和天体力学
基本信息
- 批准号:1712656
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns dynamical systems theory, with emphasis on questions in classical and celestial mechanics. Dynamical systems theory is devoted to the mathematical study of systems that evolve in time, including the gravitational n-body problem. The research in this project has direct applications to understanding the possible motions of celestial bodies such as planets, moons, and asteroids. But its primary importance lies in the development of new mathematical methods that can be applied in other contexts. From the mathematical point of view, the questions under study involve finding and understanding the solutions of a complex system of differential equations. Such equations are too complicated to solve explicitly, and instead are studied using a combination of computer simulations and theoretical, mathematical reasoning. The planar three-body problem is a classical dynamical system with a long history that still presents formidable mathematical challenges. Many simple and beautiful periodic motions have been discovered, but only a few have been understood at the level of mathematical proof. The system is formulated as ordinary differential equations in five dimensions. Using Poincare sections, the periodic orbits can be found as fixed points of four-dimensional mappings. One part of this project is devoted to developing new topological methods for finding periodic orbits. One of the characteristic features of celestial mechanics is the presence of singularities. The behavior of orbits near collisions can be chaotic. There are several open questions in this area under investigation as part of the research. The simplest periodic orbits in the n-body problem are relative equilibrium motions that arise from planar central configurations. Understanding central configurations in the plane and their generalization to higher dimensions is another goal of this project. It is a difficult algebraic problem to find or even count the central configurations. The problems of finiteness of the number of central configurations and the question of stability of the resulting periodic solutions will be investigated.
本研究项目涉及动力系统理论,重点是经典力学和天体力学中的问题。动力系统理论致力于对随时间演化的系统进行数学研究,包括引力n体问题。该项目的研究对理解行星、卫星和小行星等天体的可能运动有直接的应用。但它最重要的是发展新的数学方法,可以应用于其他情况。从数学的角度来看,所研究的问题涉及到寻找和理解一个复杂的微分方程组的解。这样的方程太复杂,无法明确地解决,而是使用计算机模拟和理论数学推理相结合的方法进行研究。平面三体问题是一个历史悠久的经典动力系统问题,至今仍存在着巨大的数学挑战。许多简单而美丽的周期运动已经被发现,但只有少数被理解为数学证明的水平。该系统被表述为五维常微分方程。利用庞加莱截面,周期轨道可以作为四维映射的不动点。这个项目的一部分致力于开发新的拓扑方法来寻找周期轨道。天体力学的特征之一是奇点的存在。碰撞附近的轨道行为可能是混沌的。作为研究的一部分,这一领域有几个悬而未决的问题正在调查中。n体问题中最简单的周期轨道是由平面中心构型产生的相对平衡运动。理解平面上的中心构型并将其推广到更高的维度是这个项目的另一个目标。寻找甚至计算中心构型是一个困难的代数问题。中心构型数目的有限性问题和由此产生的周期解的稳定性问题将被研究。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Counting Relative Equilibrium Configuration of the Full Two-Body Problem
计算完整二体问题的相对平衡配置
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:1.6
- 作者:Moeckel, Richard
- 通讯作者:Moeckel, Richard
Minimal Geodesics of the Isosceles Three Body Problem
等腰三体问题的最小测地线
- DOI:10.1007/s12346-020-00381-6
- 发表时间:2020
- 期刊:
- 影响因子:1.4
- 作者:Moeckel, Richard
- 通讯作者:Moeckel, Richard
Embedding the Kepler Problem as a Surface of Revolution
将开普勒问题嵌入革命表面
- DOI:10.1134/s1560354718060059
- 发表时间:2018
- 期刊:
- 影响因子:1.4
- 作者:Moeckel, Richard
- 通讯作者:Moeckel, Richard
Chazy-Type Asymptotics and Hyperbolic Scattering for the n-Body Problem
n 体问题的混沌型渐近和双曲散射
- DOI:10.1007/s00205-020-01542-2
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Duignan, Nathan;Moeckel, Richard;Montgomery, Richard;Yu, Guowei
- 通讯作者:Yu, Guowei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Moeckel其他文献
Minimal energy configurations of gravitationally interacting rigid bodies
- DOI:
10.1007/s10569-016-9743-7 - 发表时间:
2016-11-28 - 期刊:
- 影响因子:1.400
- 作者:
Richard Moeckel - 通讯作者:
Richard Moeckel
Relative equilibria with clusters of small masses
- DOI:
10.1007/bf02219396 - 发表时间:
1997-10-01 - 期刊:
- 影响因子:1.300
- 作者:
Richard Moeckel - 通讯作者:
Richard Moeckel
Total Collision with Slow Convergence to a Degenerate Central Configuration
完全冲突与缓慢收敛到退化的中央配置
- DOI:
10.1134/s1560354723040020 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Richard Moeckel - 通讯作者:
Richard Moeckel
A nonintegrable model in general relativity
- DOI:
10.1007/bf02096667 - 发表时间:
1992-11-01 - 期刊:
- 影响因子:2.600
- 作者:
Richard Moeckel - 通讯作者:
Richard Moeckel
Counting relative equilibrium configurations of the full two-body problem
- DOI:
10.1007/s10569-018-9817-9 - 发表时间:
2018-02-07 - 期刊:
- 影响因子:1.400
- 作者:
Richard Moeckel - 通讯作者:
Richard Moeckel
Richard Moeckel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Moeckel', 18)}}的其他基金
相似海外基金
Newhouse Phenomena in Celestial Mechanics and Spectral Theory
天体力学和谱理论中的纽豪斯现象
- 批准号:
1855541 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Validated Computational Methods in Global Analysis and Applications to Celestial Mechanics
全局分析中经过验证的计算方法及其在天体力学中的应用
- 批准号:
1813501 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
- 批准号:
341836-2012 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Research Initiation Award: Central Configurations, New Variational Method and Periodic Solutions in Celestial Mechanics
研究启动奖:天体力学的中心构型、新变分法和周期解
- 批准号:
1661203 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
- 批准号:
341836-2012 - 财政年份:2015
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Research Initiation Award: Central Configurations, New Variational Method and Periodic Solutions in Celestial Mechanics
研究启动奖:天体力学的中心构型、新变分法和周期解
- 批准号:
1409939 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
- 批准号:
341836-2012 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
- 批准号:
341836-2012 - 财政年份:2013
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Methods in Classical and Celestial Mechanics
经典和天体力学中的数学方法
- 批准号:
341836-2012 - 财政年份:2012
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual