High-Dimensional Dynamical Systems

高维动力系统

基本信息

  • 批准号:
    1714187
  • 负责人:
  • 金额:
    $ 33.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

This project develops mathematical models for disordered physical systems. The primary applications studied in this project are turbulent fluids, the microstructure of glasses, and branched structures that arise in the aggregation of clusters and the shape of lightning. As often happens, the mathematical models studied also explain phenomena unrelated to specific physical systems, and this project also includes a statistical approach to the performance of several widely-used numerical algorithms. The primary purpose of this research is to develop mathematical methods to improve understanding of important phenomena, particularly turbulence in fluids and the aging of glasses, which are well-known but poorly-understood systems in physics and materials science. This project also contributes to the development of the STEM workforce through the training of graduate students.The main focus of this project is the development of mathematical methods for dynamical systems that are strongly nonlinear, involve randomness, and have a large number of degrees of freedom. The mathematical tools to analyze these systems are drawn from integrable systems, kinetic theory, partial differential equations and probability theory. Four projects are considered: (a) random isometric embeddings and turbulence in incompressible fluids; (b) conformal processes with branching; (c) aging of spin glasses; and (d) statistical behavior of algorithms in numerical linear algebra. Projects (a) and (b) provide rigorous results on random geometry. In project (a), turbulence heuristics are used to improve the known critical exponents for the isometric embedding problem in differential geometry. This construction also sheds light on random fluid flows arising in isotropic homogeneous turbulence. In project (b), a new stochastic partial differential equation, whose solutions describe conformally embedded trees, is investigated. Project (c) considers a basic model for vitreous systems in materials science. The purpose of project (d) is to quantify the `probability of difficulty' for several widely used algorithms in computer science. Both these projects are unified by the study of glassy behavior. In particular, the algorithms studied may be viewed as high-dimensional dynamical systems with exponentially many critical points. Their performance reflects glassy behavior such as aging and metastability. Conversely, the algorithms serve as numerical laboratories that shed light on aging dynamics in physical glasses.
这个项目为无序的物理系统开发数学模型。该项目研究的主要应用是湍流流体、玻璃的微观结构以及星团聚集时出现的分支结构和闪电的形状。正如经常发生的那样,所研究的数学模型也解释了与特定物理系统无关的现象,该项目还包括对几种广泛使用的数值算法的性能的统计方法。这项研究的主要目的是开发数学方法来提高对重要现象的理解,特别是流体中的湍流和玻璃的老化,这些都是物理学和材料科学中众所周知但鲜为人知的系统。该项目还通过培养研究生来促进STEM队伍的发展。该项目的主要重点是为具有强非线性、包含随机性和大量自由度的动力系统开发数学方法。分析这些系统的数学工具来自于可积系统、动力学理论、偏微分方程组和概率论。(A)不可压缩流体中的随机等距嵌入和湍流;(B)具有分支的共形过程;(C)自旋玻璃的老化;以及(D)数值线性代数算法的统计行为。项目(A)和(B)提供了关于随机几何的严格结果。在方案(A)中,湍流启发式被用来改进微分几何中等距嵌入问题的已知临界指数。这种结构也揭示了在各向同性均匀湍流中产生的随机流体流动。在方案(B)中,研究了一类新的随机偏微分方程解描述共形嵌入树。项目(C)考虑了材料科学中玻璃体系统的基本模型。项目(D)的目的是对计算机科学中广泛使用的几种算法的“困难概率”进行量化。这两个项目都通过对玻璃行为的研究而统一起来。特别地,所研究的算法可以被视为具有指数多个临界点的高维动力系统。它们的表现反映了老化和亚稳定等呆板的行为。相反,这些算法充当了数字实验室,揭示了物理眼镜的老化动力学。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Proof of Harish-Chandra’s Integral Formula
On Horn’s Problem and Its Volume Function
论霍恩问题及其体积函数
  • DOI:
    10.1007/s00220-019-03646-7
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Coquereaux, Robert;McSwiggen, Colin;Zuber, Jean-Bernard
  • 通讯作者:
    Zuber, Jean-Bernard
Revisiting Horn’s problem
重新审视霍恩问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Govind Menon其他文献

The second law: information theory and self-assembly.
第二定律:信息论和自组装。
  • DOI:
    10.1016/j.bpj.2021.06.028
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Govind Menon
  • 通讯作者:
    Govind Menon
Scaling limits of branching Loewner evolutions and the Dyson superprocess
分支勒纳演化和戴森超级过程的尺度限制
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vivian Olsiewski Healey;Govind Menon
  • 通讯作者:
    Govind Menon
Modelling compartmentalization towards elucidation and engineering of spatial organization in biochemical pathways
建模分区以阐明和设计生化途径中的空间组织
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Govind Menon;C. Okeke;J. Krishnan
  • 通讯作者:
    J. Krishnan
The Riemannian Langevin equation and conic programs
黎曼朗之万方程和二次曲线规划
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Govind Menon;Tianmin Yu
  • 通讯作者:
    Tianmin Yu
Core medical skills training days: streamlining practical and resuscitation skills training in our local health board
  • DOI:
    10.7861/futurehosp.6-1-s146
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dena Pitrola;Melanie Cotter;Anil Kumar;Govind Menon
  • 通讯作者:
    Govind Menon

Govind Menon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Govind Menon', 18)}}的其他基金

Renormalization Group Flows, Embedding Theorems, and Applications
重整化群流、嵌入定理和应用
  • 批准号:
    2107205
  • 财政年份:
    2021
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Integrability and turbulence
可积性和湍流
  • 批准号:
    1411278
  • 财政年份:
    2014
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Continuing Grant
BECS: Collaborative Research: Engineering Complex Self-Assembling Systems Composed of Interacting Patterned Polyhedra: Theory and Experiments
BECS:协作研究:由相互作用的图案多面体组成的工程复杂自组装系统:理论与实验
  • 批准号:
    1022638
  • 财政年份:
    2010
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
CAREER: Scaling and self-similarity in nonlinear science-education and research
职业:非线性科学教育和研究中的标度和自相似性
  • 批准号:
    0748482
  • 财政年份:
    2008
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Scaling and Infinite Divisibility in Models of Coarsening and Other Dynamic Selection Problems
合作研究:粗化和其他动态选择问题模型中的缩放和无限可分性
  • 批准号:
    0605006
  • 财政年份:
    2006
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Continuing Grant
Ergodic properties of infinite dimensional dynamical systems
无限维动力系统的遍历性质
  • 批准号:
    2888861
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Studentship
Studies on rigorous integrator for infinite dimensional dynamical systems
无限维动力系统严格积分器研究
  • 批准号:
    22K03411
  • 财政年份:
    2022
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
  • 批准号:
    RGPIN-2017-06521
  • 财政年份:
    2022
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and persistence of historic wandering domains for high-dimensional dynamical systems
高维动力系统历史漂移域的存在和持续
  • 批准号:
    21K03332
  • 财政年份:
    2021
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
  • 批准号:
    2108285
  • 财政年份:
    2021
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
  • 批准号:
    RGPIN-2017-06521
  • 财政年份:
    2021
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Discovery Grants Program - Individual
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
  • 批准号:
    2210867
  • 财政年份:
    2021
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Lie Groupoids and Infinite-Dimensional Dynamical Systems
李群群和无限维动力系统
  • 批准号:
    2008021
  • 财政年份:
    2020
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Continuing Grant
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
  • 批准号:
    RGPIN-2017-06521
  • 财政年份:
    2020
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了