Imaging Electrical Conductivities from Their Induced Current and Network Tomography for Random Walks on Graphs

通过感应电流和网络断层扫描对电导率进行成像,以实现图形上的随机游走

基本信息

  • 批准号:
    1715850
  • 负责人:
  • 金额:
    $ 13.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

This project focuses on two applications that utilize methods from the field of inverse problems. The first concerns the mathematical analysis of the next generation medical imaging methods and contributes to the theoretical foundation of current density based imaging methods. Successful results will allow images with significantly higher quality and accuracy than possible with current medical imaging modalities. Such highly accurate imaging methods are crucial for early detection, diagnoses, and treatment of cancer, and provide alternatives for risky and invasive procedures and reduce the cost of treatment. The methods also apply to the analysis of electrical networks with a prescribed current, and will include the development of random walk models on graphs to describe transitions in conductivity. Random walks on graphs arise in many areas of science and the proposed research has direct impact in the analysis of computer and social networks, cryptography, epidemiology, statistical physics, economics, and biology.The first part of the project focuses on the inverse problem of recovering the electrical conductivity inside a body from the knowledge of the induced current density vector field in the interior and Dirichlet or Neumann boundary conditions. This hybrid inverse problem combines high resolution of Magnetic Resonance Imaging (MRI) and high contrast of Electrical Impedance Tomography (EIT) to provide images with high resolutions and high contrast. It is closely related to the weighted least gradient problems and 1-Laplacian equations with variable coefficients, and more study is needed on the existence and uniqueness of solutions of such problems. The second part includes the problem of determining the conductivity matrix of an electrical network from the induced current along the edges. It can be generalized to the inverse problem of determining transition probabilities of random walk models on graphs from the knowledge of the expected net number of times the random walker passes along the edges. The results from these fundamental mathematical questions will contribute to various seemingly unrelated specific real world applications and can be extended to many other areas. This project brings to bear a variety of mathematical tools from partial differential equations, calculus of variations, theory of minimal surfaces, geometric measure theory, and numerical analysis.
该项目重点关注利用反问题领域方法的两个应用程序。第一个关注下一代医学成像方法的数学分析,并有助于基于电流密度的成像方法的理论基础。成功的结果将使图像具有比当前医学成像模式更高的质量和准确性。这种高度准确的成像方法对于癌症的早期检测、诊断和治疗至关重要,并为风险和侵入性手术提供了替代方案,降低了治疗成本。这些方法也适用于分析具有规定电流的电网络,并将包括在图上开发随机游走模型来描述电导率的转变。图上的随机游走出现在许多科学领域,拟议的研究对计算机和社交网络、密码学、流行病学、统计物理学、经济学、本项目的第一部分重点是从内部感应电流密度矢量场和Dirichlet或Neumann边界的知识中恢复体内电导率的逆问题条件该混合逆问题结合了磁共振成像(MRI)的高分辨率和电阻抗断层成像(EIT)的高对比度,以提供具有高分辨率和高对比度的图像。它与变系数的加权最小梯度问题和1-Laplacian方程有着密切的联系,这类问题解的存在性和唯一性还有待进一步的研究。第二部分包括从沿沿着边的感应电流确定电网络的电导率矩阵的问题。它可以推广到确定转移概率的随机行走模型的图从预期的净次数的随机步行者通过沿着边的知识的逆问题。这些基本数学问题的结果将有助于各种看似无关的具体真实的世界的应用,并可以扩展到许多其他领域。这个项目带来承担各种数学工具,从偏微分方程,变分法,极小曲面理论,几何测量理论和数值分析。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniqueness of minimizers of weighted least gradient problems arising in hybrid inverse problems
A singular Sphere Covering Inequality: uniqueness and symmetry of solutions to singular Liouville-type equations
  • DOI:
    10.1007/s00208-018-1761-1
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    D. Bartolucci;C. Gui;Aleks Jevnikar;Amir Moradifam
  • 通讯作者:
    D. Bartolucci;C. Gui;Aleks Jevnikar;Amir Moradifam
The sphere covering inequality and its applications
  • DOI:
    10.1007/s00222-018-0820-2
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    C. Gui;Amir Moradifam
  • 通讯作者:
    C. Gui;Amir Moradifam
General least gradient problems with obstacle
障碍物的一般最小梯度问题
Existence and structure of minimizers of least gradient problems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Moradifam其他文献

Oscillation of solutions of second-order nonlinear differential equations of Euler type
欧拉型二阶非线性微分方程解的振荡
A note on simultaneous preconditioning and symmetrization of non‐symmetric linear systems
关于非对称线性系统同时预处理和对称化的注解
Remarks on a mean field equation on $\mathbb{S}^{2}$
$mathbb{S}^{2}$ 上平均场方程的备注
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Gui;Fengbo Hang;Amir Moradifam;Xiaodong Wang
  • 通讯作者:
    Xiaodong Wang
REMARKS ON A MEAN FIELD EQUATION ON S
关于 S 的平均场方程的评论
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amir Moradifam
  • 通讯作者:
    Amir Moradifam
Optimal weighted Hardy–Rellich inequalities on H2 ∩ H01

Amir Moradifam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Moradifam', 18)}}的其他基金

Mean Field Equations and Inverse Wave Problems
平均场方程和反波问题
  • 批准号:
    1953620
  • 财政年份:
    2020
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Standard Grant

相似海外基金

FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
  • 批准号:
    10079892
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Legacy Department of Trade & Industry
Can the Arrival of Electrical Vehicles (EVs) be a Window of Opportunity for Southeast Asia's Automotive Industry to leapfrog?
电动汽车(EV)的到来能否成为东南亚汽车业跨越式发展的机会之窗?
  • 批准号:
    24K05082
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Electrical conductivity measurements of silicate melts at the Earth's mantle conditions
地幔条件下硅酸盐熔体的电导率测量
  • 批准号:
    24K17146
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Electrical Signals in Soils across Terrestrial and Aquatic Interfaces
职业:跨越陆地和水生界面的土壤中的电信号
  • 批准号:
    2340719
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Continuing Grant
Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
  • 批准号:
    23K25176
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Electrical Storage Systems for Sustainable Uninterrupted Clean Energy and Water Supply to Hospitals and Communities in South Sudan
蓄电系统为南苏丹的医院和社区提供可持续不间断的清洁能源和供水
  • 批准号:
    10072866
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Collaborative R&D
CAREER: Modulating endothelial cell function using targeted electrical stimulation
职业:使用靶向电刺激调节内皮细胞功能
  • 批准号:
    2338949
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Continuing Grant
CAREER: Manufacturing of Continuous Network Graphene-Copper Composites for Ultrahigh Electrical Conductivity
职业:制造具有超高导电性的连续网络石墨烯-铜复合材料
  • 批准号:
    2338609
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Standard Grant
CAREER: Mechano-Metabolic Control of Electrical Remodeling of Human Induced Pluripotent Stem Cell Derived Engineered Heart Muscle
职业:人类诱导多能干细胞衍生的工程心肌电重塑的机械代谢控制
  • 批准号:
    2338931
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
  • 批准号:
    2419915
  • 财政年份:
    2024
  • 资助金额:
    $ 13.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了