Mean Field Equations and Inverse Wave Problems
平均场方程和反波问题
基本信息
- 批准号:1953620
- 负责人:
- 金额:$ 19.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on the study of mean field equations and inverse wave equations, two important types of partial differential equations. Mean field equations arise in the study of several important phenomena in mathematics, mathematical physics, and biology such as Chern-Simons gauge field theories, rigidity of Hawking mass in general relativity, and mathematical models for cell mobility and turbulence. Inverse wave problems investigated in this project have immediate applications in photoacoustic and thermoacoustic tomography and will contribute to the advancement of new medical imaging methods with significant potential in clinical applications. Medical imaging methods are crucial for early detection, diagnosis, and treatment of diseases. This project provides research training opportunities for graduate students. Undergraduate students, and high school students from underrepresented groups and disadvantaged backgrounds will benefit from the proposed research, educational, and outreach plans. The principal investigator (PI) aims to study symmetry and uniqueness of solutions of mean field type equations by developing new functional inequalities in the spirit of the Sphere Covering Inequality. The Sphere Covering Inequality was recently discovered by the PI and his collaborator and has since led to solutions for several open problems. The PI will develop singular versions of the sphere covering inequality as well as inequalities with improved constants on non-simply connected regions, and extend such inequalities to higher dimensions. The project has important applications to various problems including Nirenberg's problem of prescribing Gaussian curvature on the sphere, Moser-Trudinger inequalities, self-dual and Chern-Simons gauge field theories, rigidity of Hawking mass in general relativity, Keller-Segal type free boundary models for cell mobility, Onsager's vortex theory, Toda systems, and cosmic string equations. In the second part of the project, the PI will investigate the inverse problem of determining both the sources of a wave and its speed inside a medium from the measurements of the solutions of the wave equation on the boundary, which is a long-standing open problem and has important applications in medical imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画主要研究平均场方程与逆波方程这两类重要的偏微分方程。平均场方程出现在数学、数学物理和生物学中的几个重要现象的研究中,如陈-西蒙斯规范场论、广义相对论中霍金质量的刚性以及细胞流动和湍流的数学模型。逆波问题的研究在这个项目中有直接的应用在光声和热声层析成像,并将有助于新的医学成像方法的进步,具有显着的潜力,在临床应用。医学成像方法对于疾病的早期检测、诊断和治疗至关重要。该项目为研究生提供了研究培训机会。来自代表性不足群体和弱势背景的本科生和高中生将从拟议的研究、教育和推广计划中受益。主要研究员(PI)的目的是研究对称性和唯一性的平均场型方程的解决方案,通过开发新的功能不等式的精神,球覆盖不等式。球面覆盖不等式是最近由PI和他的合作者发现的,并且已经导致了几个开放问题的解决方案。PI将开发奇异版本的球覆盖不等式以及非单连通区域上的改进常数不等式,并将这些不等式扩展到更高的维度。该项目有重要的应用到各种问题,包括尼伦伯格的问题规定高斯曲率的领域,莫泽Trudinger不等式,自对偶和陈-西蒙斯规范场理论,刚性霍金质量在广义相对论,凯勒-西格尔型自由边界模型的细胞流动性,昂萨格的涡旋理论,户田系统,和宇宙弦方程。在该项目的第二部分,PI将研究通过测量边界上波动方程的解来确定介质内的波源及其速度的逆问题,这是一个很长的-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Remarks on a Mean Field Equation on S2
S2 上的平均场方程的备注
- DOI:10.4208/jms.v54n1.21.04
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Gui, Changfeng
- 通讯作者:Gui, Changfeng
The Sphere Covering Inequality and Its Dual
- DOI:10.1002/cpa.21903
- 发表时间:2020-06
- 期刊:
- 影响因子:3
- 作者:C. Gui;Fengbo Hang;Amir Moradifam
- 通讯作者:C. Gui;Fengbo Hang;Amir Moradifam
Stability of Current Density Impedance Imaging
- DOI:10.1137/19m126520x
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Robert Lopez;Amir Moradifam
- 通讯作者:Robert Lopez;Amir Moradifam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Moradifam其他文献
Oscillation of solutions of second-order nonlinear differential equations of Euler type
欧拉型二阶非线性微分方程解的振荡
- DOI:
10.1016/j.jmaa.2006.03.065 - 发表时间:
2007 - 期刊:
- 影响因子:1.3
- 作者:
A. Aghajani;Amir Moradifam - 通讯作者:
Amir Moradifam
A note on simultaneous preconditioning and symmetrization of non‐symmetric linear systems
关于非对称线性系统同时预处理和对称化的注解
- DOI:
10.1002/nla.730 - 发表时间:
2008 - 期刊:
- 影响因子:4.3
- 作者:
N. Ghoussoub;Amir Moradifam - 通讯作者:
Amir Moradifam
Remarks on a mean field equation on $\mathbb{S}^{2}$
$mathbb{S}^{2}$ 上平均场方程的备注
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
C. Gui;Fengbo Hang;Amir Moradifam;Xiaodong Wang - 通讯作者:
Xiaodong Wang
REMARKS ON A MEAN FIELD EQUATION ON S
关于 S 的平均场方程的评论
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Amir Moradifam - 通讯作者:
Amir Moradifam
Optimal weighted Hardy–Rellich inequalities on H2 ∩ H01
- DOI:
10.1112/jlms/jdr045 - 发表时间:
2009-10 - 期刊:
- 影响因子:0
- 作者:
Amir Moradifam - 通讯作者:
Amir Moradifam
Amir Moradifam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Moradifam', 18)}}的其他基金
Imaging Electrical Conductivities from Their Induced Current and Network Tomography for Random Walks on Graphs
通过感应电流和网络断层扫描对电导率进行成像,以实现图形上的随机游走
- 批准号:
1715850 - 财政年份:2017
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mean Field Games and Master equations
平均场游戏和主方程
- 批准号:
EP/X020320/1 - 财政年份:2023
- 资助金额:
$ 19.89万 - 项目类别:
Research Grant
Cut-off phenomenon, ergodicity and other properties for stochastic differential equations of partial, rough and mean-field type.
偏、粗糙和平均场型随机微分方程的截止现象、遍历性和其他性质。
- 批准号:
2884422 - 财政年份:2023
- 资助金额:
$ 19.89万 - 项目类别:
Studentship
Studies of the Mean Field and Allen-Cahn Equations
平均场和 Allen-Cahn 方程的研究
- 批准号:
2155183 - 财政年份:2022
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
CAREER: Mean Field Games with Economics Applications: New Techniques in Partial Differential Equations
职业:平均场博弈与经济学应用:偏微分方程新技术
- 批准号:
2045027 - 财政年份:2021
- 资助金额:
$ 19.89万 - 项目类别:
Continuing Grant
Mathematical analysis on the linear response for solutions of mean field equations
平均场方程解线性响应的数学分析
- 批准号:
20K03675 - 财政年份:2020
- 资助金额:
$ 19.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control of stochastic mean-field equations with applications to brain networks (A10*)
随机平均场方程的控制及其在脑网络中的应用 (A10*)
- 批准号:
413877837 - 财政年份:2019
- 资助金额:
$ 19.89万 - 项目类别:
Collaborative Research Centres
Mean-field equations, information inequalities and concentration bounds
平均场方程、信息不等式和浓度界限
- 批准号:
2294370 - 财政年份:2019
- 资助金额:
$ 19.89万 - 项目类别:
Studentship
Derivation of mean-field equations and dynamics of coherent structures in nonlinear dispersive PDE
非线性色散偏微分方程中平均场方程的推导和相干结构动力学
- 批准号:
1500106 - 财政年份:2015
- 资助金额:
$ 19.89万 - 项目类别:
Continuing Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1310746 - 财政年份:2012
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1109682 - 财政年份:2011
- 资助金额:
$ 19.89万 - 项目类别:
Standard Grant














{{item.name}}会员




