CSR: Small: Evolution of Computer Vision for Low Power Devices, Breaking its Power Wall and Computational Complexity
CSR:小:低功耗设备计算机视觉的发展,打破其功耗墙和计算复杂性
基本信息
- 批准号:1718538
- 负责人:
- 金额:$ 49.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The accuracy of computer vision for object recognition and classification has surpassed human capabilities. Adoption of brain-inspired Convolutional Neural Network (CNN) models and the ability to train and execute these complex networks by modern graphical processing units (GPUs) are the backbone of this progress. However, in terms of computational requirement, memory usage, and power consumption, the CNN solutions are extremely demanding. Meanwhile, many interesting applications of computer vision - such as small robotics, a wide range of Cyber-Physical Systems, and many smart devices on the Internet of Things - are resource constrained. This project aims to substantially lower the computational complexity, the average-case classification power and the latency of CNN-based vision, enabling its deployment to a much wider range of platforms. From a societal viewpoint, this study enhances the research, education, and diversity at George Mason University (GMU) by involving graduate, undergraduate, minority and female students, and enriches several courses that are offered at GMU.The goals of this research project are as follows: (1) Reformulating the CNN-based learning model into an Iterative Convolutional Neural Network (ICNN) learning model that allows early classification and permits early termination via various thresholding mechanisms and developing a framework to use the contextual knowledge that could be extracted from earlier iterations to guide and reduce the computation of future iterations. (2) Developing an approximate ICNN coprocessor that supports approximation in memory and logic by exploring new approximation opportunities created by ICNN, and enhancing the ICNN to adjust and learn the approximate hardware behavior in addition to its intended functionality.
计算机视觉对物体识别和分类的准确性已经超过了人类的能力。采用受大脑启发的卷积神经网络(CNN)模型以及通过现代图形处理单元(GPU)训练和执行这些复杂网络的能力是这一进展的支柱。然而,在计算要求、内存使用和功耗方面,CNN解决方案的要求非常高。与此同时,计算机视觉的许多有趣应用-例如小型机器人,各种网络物理系统和物联网上的许多智能设备-都受到资源限制。该项目旨在大幅降低基于CNN的视觉的计算复杂性,平均情况分类能力和延迟,使其能够部署到更广泛的平台。从社会的角度来看,这项研究通过涉及研究生,本科生,少数民族和女性学生,并丰富了GMU提供的几门课程,增强了乔治梅森大学(GMU)的研究,教育和多样性。本研究项目的目标如下:(1)将基于CNN的学习模型重构为迭代卷积神经网络(ICNN)学习模型,允许早期分类,并允许通过各种阈值机制提前终止,并开发一个框架,使用可以从早期迭代中提取的上下文知识来指导和减少未来迭代的计算。(2)开发近似ICNN协处理器,通过探索ICNN创建的新近似机会来支持内存和逻辑中的近似,并增强ICNN以调整和学习近似硬件行为以及其预期功能。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ICNN: An iterative implementation of convolutional neural networks to enable energy and computational complexity aware dynamic approximation
- DOI:10.23919/date.2018.8342068
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:Katayoun Neshatpour;F. Behnia;H. Homayoun;Avesta Sasan
- 通讯作者:Katayoun Neshatpour;F. Behnia;H. Homayoun;Avesta Sasan
Exploiting Energy-Accuracy Trade-off through Contextual Awareness in Multi-Stage Convolutional Neural Networks
- DOI:10.1109/isqed.2019.8697497
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:Katayoun Neshatpour;F. Behnia;H. Homayoun;Avesta Sasan
- 通讯作者:Katayoun Neshatpour;F. Behnia;H. Homayoun;Avesta Sasan
Code-Bridged Classifier (CBC): A Low or Negative Overhead Defense for Making a CNN Classifier Robust Against Adversarial Attacks
- DOI:10.1109/isqed48828.2020.9136987
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:F. Behnia;Ali Mirzaeian;M. Sabokrou;S. Manoj;T. Mohsenin;Khaled N. Khasawneh;Liang Zhao;H. Homayoun;Avesta Sasan
- 通讯作者:F. Behnia;Ali Mirzaeian;M. Sabokrou;S. Manoj;T. Mohsenin;Khaled N. Khasawneh;Liang Zhao;H. Homayoun;Avesta Sasan
ICNN: The Iterative Convolutional Neural Network
- DOI:10.1145/3355553
- 发表时间:2020-01-01
- 期刊:
- 影响因子:2
- 作者:Neshatpour, Katayoun;Homayoun, Houman;Sasan, Avesta
- 通讯作者:Sasan, Avesta
TCD-NPE: A Re-configurable and Efficient Neural Processing Engine, Powered by Novel Temporal-Carry-deferring MACs
- DOI:10.1109/reconfig48160.2019.8994751
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Ali Mirzaeian;H. Homayoun;Avesta Sasan
- 通讯作者:Ali Mirzaeian;H. Homayoun;Avesta Sasan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avesta Sasan其他文献
Variation Trained Drowsy Cache (VTD-Cache): A History Trained Variation Aware Drowsy Cache for Fine Grain Voltage Scaling
变化训练的休眠缓存(VTD-Cache):用于细粒度电压缩放的历史训练变化感知休眠缓存
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:2.8
- 作者:
Avesta Sasan;K. Amiri;H. Homayoun;A. Eltawil;F. Kurdahi - 通讯作者:
F. Kurdahi
CSCMAC - Cyclic Sparsely Connected Neural Network Manycore Accelerator
CSCMAC - 循环稀疏连接神经网络众核加速器
- DOI:
10.1109/isqed48828.2020.9137013 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hirenkumar Paneliya;M. Hosseini;Avesta Sasan;H. Homayoun;T. Mohsenin - 通讯作者:
T. Mohsenin
Improving performance and reducing energy-delay with adaptive resource resizing for out-of-order embedded processors
通过针对无序嵌入式处理器的自适应资源调整大小来提高性能并减少能量延迟
- DOI:
10.1145/1375657.1375668 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
H. Homayoun;S. Pasricha;Avesta Sasan;A. Veidenbaum - 通讯作者:
A. Veidenbaum
IR-ATA: IR Annotated Timing Analysis, A Flow for Closing the Loop Between PDN Design, IR Analysis & Timing Closure
IR-ATA:IR 注释时序分析、用于闭合 PDN 设计、IR 分析之间循环的流程
- DOI:
10.1145/3287624.3287683 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ashka Vakil;H. Homayoun;Avesta Sasan - 通讯作者:
Avesta Sasan
Comprehensive Evaluation of Machine Learning Countermeasures for Detecting Microarchitectural Side-Channel Attacks
检测微架构侧通道攻击的机器学习对策的综合评估
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Han Wang;H. Sayadi;Avesta Sasan;S. Rafatirad;T. Mohsenin;H. Homayoun - 通讯作者:
H. Homayoun
Avesta Sasan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Avesta Sasan', 18)}}的其他基金
SHF: Small: Improving Efficiency of Vision Transformers via Software-Hardware Co-Design and Acceleration
SHF:小型:通过软硬件协同设计和加速提高视觉变压器的效率
- 批准号:
2233893 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
SaTC: STARSS: Small: IoT Circuit Locking, Obfuscation & Authentication Kernel (CLOAK), A Compilable Architecture for Secure IoT Device Production, Testing, Activation & Ope
SaTC:STARSS:小型:物联网电路锁定、混淆
- 批准号:
2200446 - 财政年份:2021
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CSR: Small: Evolution of Computer Vision for Low Power Devices, Breaking its Power Wall and Computational Complexity
CSR:小:低功耗设备计算机视觉的发展,打破其功耗墙和计算复杂性
- 批准号:
2146726 - 财政年份:2021
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
SaTC: STARSS: Small: IoT Circuit Locking, Obfuscation & Authentication Kernel (CLOAK), A Compilable Architecture for Secure IoT Device Production, Testing, Activation & Ope
SaTC:STARSS:小型:物联网电路锁定、混淆
- 批准号:
1718434 - 财政年份:2017
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Discovery and directed evolution of small molecule biosensors
小分子生物传感器的发现和定向进化
- 批准号:
DP230103062 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Discovery Projects
Collaborative Research: EVOLUTION OF NORTH AMERICAN SMALL MAMMAL COMMUNITIES IN RESPONSE TO OLIGO-MIOCENE LANDSCAPE CHANGE
合作研究:北美小哺乳动物群落响应寡中新世景观变化的进化
- 批准号:
2322804 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: EVOLUTION OF NORTH AMERICAN SMALL MAMMAL COMMUNITIES IN RESPONSE TO OLIGO-MIOCENE LANDSCAPE CHANGE
合作研究:北美小哺乳动物群落响应寡中新世景观变化的进化
- 批准号:
2322805 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: EVOLUTION OF NORTH AMERICAN SMALL MAMMAL COMMUNITIES IN RESPONSE TO OLIGO-MIOCENE LANDSCAPE CHANGE
合作研究:北美小哺乳动物群落响应寡中新世景观变化的进化
- 批准号:
2322803 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Elucidation of the origin and evolution of small near-Earth objects by wide-field high-speed survey and immediate follow-up observations
通过大视场高速勘测和立即后续观测阐明近地小天体的起源和演化
- 批准号:
23K03469 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ecology, evolution, and adaptation in small populations
小种群的生态、进化和适应
- 批准号:
RGPIN-2020-05268 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Discovery Grants Program - Individual
A hidden record of early animal evolution? Exploring the Cambrian diversity of acritarchs and small carbonaceous fossils.
早期动物进化的隐藏记录?
- 批准号:
2734191 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Studentship
Star Cluster Evolution: Near and Far, Large and Small, Old and Young
星团演化:近与远、大与小、老与年轻
- 批准号:
RGPIN-2019-06570 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Discovery Grants Program - Individual
CAS: Catalytic Synthesis via Small Molecule Evolution
CAS:通过小分子进化催化合成
- 批准号:
2155003 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Morphological evolution of the phase separation induced by conversion and re-conversion reactions investigated by small-angle X-ray scattering
小角 X 射线散射研究转化和再转化反应引起的相分离的形态演化
- 批准号:
22K05300 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)