AF:Small:Mathematical Programming for Average-Case Problems
AF:Small:平均情况问题的数学规划
基本信息
- 批准号:1718695
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimization, perhaps the most ubiquitous computational task of all, consists of finding a solution that either maximizes or minimizes a certain function while satisfying a set of constraints. If the space of solutions to the problem is finite and discrete, then such problems are referred to as "combinatorial optimization" problems. Unfortunately, most combinatorial optimization problems are computationally intractable to solve exactly, i.e., it is widely believed that finding the optimal solution would be prohibitively time-consuming. To cope with this computational intractability, it is natural to try to find an approximate solution to the optimization problem. A classic approach to find approximate solutions that has been studied for more than four decades now, is the use of ``convex relaxations". The idea of convex relaxation is to convert the underlying optimization task into a convex optimization task, since efficient algorithms are known for convex optimization. Intuitively, a convex optimization problem is one whose underlying solution space is continuous, and for every pair of solutions, their average is also a solution. Converting an arbitrary combinatorial optimization problem in to a convex optimization task is inherently lossy, in that we only recover an approximate solution to the original problem in the process. The question then is, how good is the approximation? and which convex relaxation yield the best approximation?Over the last two decades, these questions have been extensively studied for two fundamental classes of convex relaxations widely used in algorithms -- namely linear and semi-defintie programming. However, the study of convex relaxations have been mostly centered around the ``worst-case" where the goal is to demonstrate guarantees on the approximation obtained by the convex relaxation, on every instance of the underlying problem. Although worst case analysis is useful in that it yields a guaranteed approximation on every instance of the underlying problem, it is too pessimistic at times. In many real-life settings, the underlying input to the optimization problem is chosen from a natural probability distribution. For example, the optimization problem could be set on a social network, wherein the connections are not completely arbitrary (worst case), but have distinct structure that can be modeled using a probability distribution. Another example, is that of recovering a signal in presence of noise, the noise is typically not completely arbitrary (worst case), but somewhat random (average case).This proposal aims to study the performance of convex relaxation techniques namely linear and semidefinite programming in the average-case setting. The proposal will develop new algorithms using convex relaxations and characterize the approximation obtained via convex relaxations in the average case setting. Algorithms for the average case might translate to better approximations in practical applications. Furthermore, the techniques developed and the questions raised will advance the state-of the-art in many different areas including, approximation algorithms, computational complexity theory, probability and random matrix theory and convex optimization. The PI will disseminate the deeper insights so gained, to a broader of audience through designing a graduate course on convex relaxations, supervising research projects for undergraduates, and organizing a workshop, apart from delivering conference talks and seminars. Technical Overview:A majority of the work on mathematical programming for combinatorial optimization is devoted to algorithms on worst-case inputs. In other words, these algorithms have approximation or run-time guarantees on every input. This research project is concerned with understanding the power of mathematical-programming based algorithms in the average case, where the inputs to the algorithm are assumed to sampled from a natural underlying distribution. A new and growing body of work studies a diverse set of problems like random constraint satisfaction problems, statistical block models, planted clique, sparse PCA , tensor completion, tensor PCA, compressed sensing and matrix completion, where the underlying instance is drawn from a probability distribution.This project intends to develop a theory characterizing the power of mathematical programming, especially the sum-of-squares (SoS) SDP hierarchy in this context. Our approach has the potential to yield remarkably simple necessary and su cient conditions which precisely predict the efficacy of LP and SDP hierarchies for broad classes of distributional problems. It begins with a seemingly trite, but important conceptual shift in our approach for analyzing SoS SDPs in distributional settings, namely cast the distributional problems as the task of distinguishing samples from two diferent distributions. Viewing the problem from this standpoint, exposes the central thesis underlying this proposal that for broad classes of average-case problems, the power of LP or SDP hierarchies are characterized by simple families of distinguishing functions. For example, we argue that the power of SoS SDP relaxations for distinguishability are characterized by so-called low-degree spectral distinguishers. These are functions that compute a matrix whose entries are low-degree polynomials of the input and then output a simple function of the eigenvalues, say the largest one. This characterization opens up several exciting research avenues, both to prove lower bounds against and to devise algorithms for distributional problems. By translating these problems in to the realm of indistinguishability with respect to simple families of distinguishers, it makes them amenable to tools from random matrix theory and pseudorandomness.On the one hand, this research program is likely spur and be accompanied by, corresponding advances in random matrix theory. On the other, it holds the promise to shed light on the computational complexity of several basic tasks in high-dimensional statistics and unsupervised learning such as sparse PCA, tensor PCA and statistical block models. For average-case problems like these, in the absence of conventional complexity theoretic notions such as NP-completeness, characterizing the power of LP/SDP relaxations is possibly the most compelling evidence of their complexity that one can hope to produce.
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algorithms for heavy-tailed statistics: regression, covariance estimation, and beyond
- DOI:10.1145/3357713.3384329
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Yeshwanth Cherapanamjeri;Samuel B. Hopkins;Tarun Kathuria;P. Raghavendra;Nilesh Tripuraneni
- 通讯作者:Yeshwanth Cherapanamjeri;Samuel B. Hopkins;Tarun Kathuria;P. Raghavendra;Nilesh Tripuraneni
Lifting sum-of-squares lower bounds: degree-2 to degree-4
- DOI:10.1145/3357713.3384319
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Sidhanth Mohanty;P. Raghavendra;Jeff Xu
- 通讯作者:Sidhanth Mohanty;P. Raghavendra;Jeff Xu
List Decodable Subspace Recovery
列表可解码子空间恢复
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Prasad Raghavendra, Morris Yau
- 通讯作者:Prasad Raghavendra, Morris Yau
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prasad Raghavendra其他文献
Omnipredictors for Regression and the Approximate Rank of Convex Functions
回归的全预测器和凸函数的近似秩
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Parikshit Gopalan;Princewill Okoroafor;Prasad Raghavendra;Abhishek Shetty;Mihir Singhal - 通讯作者:
Mihir Singhal
Electronic Colloquium on Computational Complexity, Report No. 27 (2011) Beating the Random Ordering is Hard: Every ordering CSP is approximation resistant ¶
计算复杂性电子研讨会,第 27 号报告 (2011) 击败随机排序很难:每个排序 CSP 都具有近似抵抗性 ¶
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
V. Guruswami;Johan Håstad;R. Manokaran;Prasad Raghavendra;Moses Charikar - 通讯作者:
Moses Charikar
Robust Recovery for Stochastic Block Models, Simplified and Generalized
简化和广义随机块模型的鲁棒恢复
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sidhanth Mohanty;Prasad Raghavendra;David X. Wu - 通讯作者:
David X. Wu
The matching problem has no small symmetric SDP
- DOI:
10.1007/s10107-016-1098-z - 发表时间:
2016-12-22 - 期刊:
- 影响因子:2.500
- 作者:
Gábor Braun;Jonah Brown-Cohen;Arefin Huq;Sebastian Pokutta;Prasad Raghavendra;Aurko Roy;Benjamin Weitz;Daniel Zink - 通讯作者:
Daniel Zink
Improved Approximation Algorithms for the Spanning Star Forest Problem
- DOI:
10.1007/s00453-011-9607-1 - 发表时间:
2011-12-21 - 期刊:
- 影响因子:0.700
- 作者:
Ning Chen;Roee Engelberg;C. Thach Nguyen;Prasad Raghavendra;Atri Rudra;Gyanit Singh - 通讯作者:
Gyanit Singh
Prasad Raghavendra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prasad Raghavendra', 18)}}的其他基金
AF:Small: Bayesian Estimation and Constraint Satisfaction
AF:Small:贝叶斯估计和约束满足
- 批准号:
2342192 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF:Small: Semidefinite Programming for High-dimensional Statistics
AF:Small:高维统计的半定规划
- 批准号:
2007676 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: On the Power of Mathematical Programming in Combinatorial Optimization
AF:媒介:协作研究:论组合优化中数学规划的力量
- 批准号:
1408643 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
- 批准号:
1149843 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Approximating NP-Hard Problems -Efficient Algorithms and their Limits
职业:近似 NP 难问题 - 高效算法及其局限性
- 批准号:
1343104 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Study of sensitivity prediction of molecular target drugs for non-small cell lung cancer by in silico molecular simulation analysis and a mathematical model
基于计算机分子模拟分析和数学模型的非小细胞肺癌分子靶向药物敏感性预测研究
- 批准号:
19K12202 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: SMALL: Finding Models of Data and Mathematical Objects
AF:小:寻找数据和数学对象的模型
- 批准号:
1909634 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Mathematical Tools for Unifying and Simplifying the Analysis and Optimization of Wireless Networks
CIF:小型:用于统一和简化无线网络分析和优化的数学工具
- 批准号:
1910868 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SaTC: STARSS: Small: Combined Side-channel Attacks and Mathematical Foundations of Combined Countermeasures
SaTC:STARSS:小:组合侧信道攻击和组合对策的数学基础
- 批准号:
1929774 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Faster and Better Algorithms for, and via, Mathematical Programming Relaxations
AF:小:更快更好的算法,并通过数学编程松弛
- 批准号:
1910149 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CHS: Small: Reading, Doing, and Sharing Mathematical Expressions for the Blind: A Multimodal Approach
CHS:小:盲人阅读、做和分享数学表达式:多模式方法
- 批准号:
1910622 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Study of mathematical modeling lessons in small schools
小型学校数学建模课的研究
- 批准号:
18K02651 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SaTC: STARSS: Small: Combined Side-channel Attacks and Mathematical Foundations of Combined Countermeasures
SaTC:STARSS:小:组合侧信道攻击和组合对策的数学基础
- 批准号:
1715286 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant