NSF/DMR-BSF: Multiscale-Modeling and Raman Spectroscopy to Uncover Correlated Atomic Motions in Hybrid and Halide Perovskites

NSF/DMR-BSF:多尺度建模和拉曼光谱揭示混合和卤化物钙钛矿中的相关原子运动

基本信息

  • 批准号:
    1719353
  • 负责人:
  • 金额:
    $ 39.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe National Science Foundation and the United States -- Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Division of Materials Research funds this award, which supports research and education on how materials absorb light, how electrons behave after absorbing that energy, and how ionic motions can influence them. Many important processes involve interactions of light with matter, including solar energy conversion, light detection, and optical computing. This project brings together theoretical and experimental efforts to explore these processes using state-of-the-art investigational techniques. The PI and his group plan to focus on hybrid perovskites, materials that have recently been shown to have promising photovoltaic properties. Despite this promise, the lack of physical understanding of the ability of these materials to convert light to electricity impedes further progress. The theoretical work includes quantum mechanical modeling of materials and simulations, aiming to provide a deep understanding of the electronic states in these materials, as well as an understanding of the vibrational properties. The experimental work will center around using light to excite vibrational motions, revealing how the ions move, and how the ionic motions are affected by temperature, electric field, and previous light excitation. These spectroscopic studies of the vibrations will be connected to the theory and modeling to produce a complete picture of the behavior of these materials. The advancement of highly efficient photovoltaics that are easy to fabricate is a compelling societal need. The hybrid perovskites appear to be moving toward commercial acceptance, except that the basic physics behind their favorable properties and their evolution and degradation are not understood. This project represents an opportunity for theoretical condensed matter physics to play a vital role in assessing material properties and in opening the gateway to widespread acceptance of this technology. This could provide a wide range of societal dividends from improved and less expensive photovoltaics to sensors and optical computing elements.This project also offers unique opportunities for engaging and training the next generation of scientists to apply complex condensed-matter physics in a context of compelling interest to them, through venues ranging from public lectures, in-class discussions and tailored modules, to research projects at the undergraduate, graduate, and postdoctoral levels, and binational and international conferences. The US-based graduate students will travel to Israel to carry out research at the Israeli PI's group.TECHNICAL SUMMARY The National Science Foundation and the United States -- Israel Binational Science Foundation (BSF) jointly support this collaboration between a US-based researcher and an Israel-based researcher. The NSF Division of Materials Research funds this award, which supports research and education on uncovering and understanding the correlated ionic motions in halide (and hybrid organic-inorganic) perovskite (HOIP) materials. This class of materials has shown enormous potential as next-generation photovoltaic materials. Despite this promise, the lack of physical understanding of the ability of these materials to convert light to electricity impedes further progress. Ionic motion plays a key role in the property evolution of these materials, and it has been proposed to play a signature role in the anomalously favorable excited-carrier dynamics and lifetime.The PIs propose theoretical modeling and targeted Raman spectroscopy to reveal and rationalize a range of ionic motions, including harmonic and anharmonic phonons, incipient polar order, and other correlated ionic motions on various length- and time-scales. First-principles calculations will provide insight into interatomic interactions and short-time dynamical features. Longer time scales will be accessed via molecular dynamics and will be analyzed with a suite of correlation function tools. Raman spectroscopy will probe ionic motions and confirm and extend theoretical interpretations. Specific activities include: i) revealing and analyzing correlated ionic motions and the onset of polar order in the hybrid and halide perovskites; ii) the effect of temperature and electric field on dynamic and static ordering; iii) hydrogen bonding and structural ordering; iv) illumination-induced structural ordering and disordering; v) polar ordering and the Rashba effect.The advancement of highly efficient photovoltaics that are easy to fabricate is a compelling societal need. The hybrid perovskites appear to be moving toward commercial acceptance, except that the basic physics behind their favorable properties and their evolution and degradation are not understood. This project represents an opportunity for theoretical condensed matter physics to play a vital role in assessing material properties and opening the gateway to widespread acceptance of this technology. This project will make connections between disparate scientific disciplines including crystalline solids, liquids, and molecular materials, and will develop new techniques for Raman spectroscopic interrogation of materials and correlation function theoretical analysis of complex ionic behaviors.This project also offers unique opportunities for engaging and training the next generation of scientists to apply complex condensed-matter physics in a context of compelling interest to them, through venues ranging from public lectures, in-class discussions and tailored modules, to research projects at the undergraduate, graduate, and postdoctoral levels, and binational and international conferences. The US-based graduate students will travel to Israel to carry out research at the Israeli PI's group.
非技术摘要国家科学基金会和美国-以色列两国科学基金会(BSF)共同支持美国研究人员和以色列研究人员之间的这项合作。NSF材料研究部资助该奖项,该奖项支持材料如何吸收光,电子在吸收能量后如何表现以及离子运动如何影响它们的研究和教育。许多重要的过程涉及光与物质的相互作用,包括太阳能转换,光探测和光学计算。该项目汇集了理论和实验的努力,探索这些过程使用国家的最先进的调查技术。PI和他的团队计划专注于混合钙钛矿,这种材料最近被证明具有很好的光伏特性。尽管有这样的前景,但缺乏对这些材料将光转化为电的能力的物理理解阻碍了进一步的进展。理论工作包括材料的量子力学建模和模拟,旨在深入了解这些材料中的电子状态,以及对振动特性的理解。实验工作将围绕使用光激发振动运动,揭示离子如何移动,以及离子运动如何受到温度,电场和先前光激发的影响。这些振动的光谱研究将与理论和建模相联系,以产生这些材料行为的完整图像。易于制造的高效光致发光器件的进步是迫切的社会需求。混合钙钛矿似乎正在走向商业上的接受,除了其有利特性及其演变和退化背后的基本物理学尚不清楚。该项目代表了理论凝聚态物理学在评估材料特性和打开广泛接受该技术的大门方面发挥重要作用的机会。这可以提供广泛的社会红利,从改进的和更便宜的光电子学到传感器和光学计算元件。该项目还提供了独特的机会,通过公开讲座,课堂讨论和定制模块等场所,吸引和培训下一代科学家在他们感兴趣的背景下应用复杂的凝聚态物理学,以本科研究项目,研究生和博士后水平,以及两国和国际会议。技术概要美国国家科学基金会和美国-以色列两国科学基金会(BSF)共同支持美国研究人员和以色列研究人员之间的合作。NSF材料研究部资助了该奖项,该奖项支持有关发现和理解卤化物(和混合有机-无机)钙钛矿(HOIP)材料中相关离子运动的研究和教育。这类材料已经显示出作为下一代光伏材料的巨大潜力。尽管有这样的前景,但缺乏对这些材料将光转化为电的能力的物理理解阻碍了进一步的进展。离子运动在这些材料的性质演化中起着关键作用,并且已经被提出在非常有利的激发载流子动力学和寿命中起着签名作用。PI提出了理论建模和有针对性的拉曼光谱,以揭示和合理化一系列离子运动,包括谐波和非谐波声子,初始极性顺序,以及各种长度和时间尺度上的其他相关离子运动。第一性原理计算将提供深入了解原子间的相互作用和短时间的动力学特征。更长的时间尺度将通过分子动力学进行访问,并将使用一套相关函数工具进行分析。拉曼光谱将探测离子运动,并证实和扩展理论解释。具体活动包括:i)揭示和分析相关的离子运动和混合和卤化物钙钛矿中极性有序的开始; ii)温度和电场对动态和静态有序的影响; iii)氢键和结构有序; iv)光照诱导的结构有序和无序; v)极性有序和Rashba效应。易于制造的高效光致发光材料的发展是迫切的社会需求。混合钙钛矿似乎正在走向商业上的接受,除了其有利特性及其演变和退化背后的基本物理学尚不清楚。该项目代表了理论凝聚态物理学在评估材料特性方面发挥重要作用的机会,并为该技术的广泛接受打开了大门。这个项目将使不同的科学学科之间的联系,包括结晶固体,液体和分子材料,并将开发用于材料的拉曼光谱询问和复杂离子行为的相关函数理论分析的新技术。该项目还提供了吸引和培训下一代科学家应用复杂凝聚态-物质物理学在一个令人信服的兴趣,他们的背景下,通过场地,从公开讲座,课堂讨论和定制模块,在本科生,研究生和博士后水平的研究项目,以及两国和国际会议。美国的研究生将前往以色列,在以色列PI的小组进行研究。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene
  • DOI:
    10.1038/s41467-019-14022-3
  • 发表时间:
    2020-01-28
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Gao, Zhaoli;Wang, Sheng;Johnson, A. T. Charlie
  • 通讯作者:
    Johnson, A. T. Charlie
Ionic gating drives correlated insulator–metal transition
离子门控驱动相关绝缘体-金属转变
Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites
  • DOI:
    10.1103/physrevb.101.054302
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Harishchandra Singh;R. Fei;Y. Rakita;Michael Kulbak;D. Cahen;A. Rappe;A. Frenkel
  • 通讯作者:
    Harishchandra Singh;R. Fei;Y. Rakita;Michael Kulbak;D. Cahen;A. Rappe;A. Frenkel
Lattice mode symmetry analysis of the orthorhombic phase of methylammonium lead iodide using polarized Raman
  • DOI:
    10.1103/physrevmaterials.4.051601
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Rituraj Sharma;M. Menahem;Zhenbang Dai;Lingyuan Gao;Thomas M. Brenner;L. Yadgarov;Jiahao Zhang;Y. Rakita;R. Korobko;I. Pinkas;A. Rappe;O. Yaffe
  • 通讯作者:
    Rituraj Sharma;M. Menahem;Zhenbang Dai;Lingyuan Gao;Thomas M. Brenner;L. Yadgarov;Jiahao Zhang;Y. Rakita;R. Korobko;I. Pinkas;A. Rappe;O. Yaffe
Hybrid functional pseudopotentials
  • DOI:
    10.1103/physrevb.97.085130
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jing Yang;L. Tan;A. Rappe
  • 通讯作者:
    Jing Yang;L. Tan;A. Rappe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Rappe其他文献

Andrew Rappe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Rappe', 18)}}的其他基金

GOALI: Collaborative Research: On-Demand Continuous-Flow Production of High Performance Acrylic Resins: from Electronic-Level Modeling to Modular Process Intensification
GOALI:合作研究:高性能丙烯酸树脂的按需连续流生产:从电子级建模到模块化过程强化
  • 批准号:
    1803215
  • 财政年份:
    2018
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
Collaborative Project: GOALI: Acrylic Resins Product and Process Design through Combined Use of Quantum Chemical Calculations and Spectroscopic Methods
合作项目:GOALI:结合使用量子化学计算和光谱方法进行丙烯酸树脂产品和工艺设计
  • 批准号:
    1159736
  • 财政年份:
    2012
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: GOALI: Design of Chemically Self-Regulated, Acrylic Coatings Processes through Iterative Use of Chemical Quantum Calculations and Spectroscopic Methods
合作研究:GOALI:通过迭代使用化学量子计算和光谱方法设计化学自调节丙烯酸涂料工艺
  • 批准号:
    0932786
  • 财政年份:
    2009
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Studies of the Electronic, Structural, and Vibrational Properties of Molecule-Surface Systems
职业:分子表面系统的电子、结构和振动特性的理论研究
  • 批准号:
    9702514
  • 财政年份:
    1997
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant

相似国自然基金

Dlk1-Meg3印记控制区IG-DMR甲基化重编程介导父体咖啡因暴露所致子代骨质疏松症易感
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
泛素连接酶DDEL1/2/3介导水杨酸羟化酶DMR6降解调控植物免疫的分子机制
  • 批准号:
    32300255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PpbHLH14-DMR6-like响应MeJA诱导增强梨炭疽病抗性的分子机制
  • 批准号:
    32302484
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circRNA-DMR介导m6A去甲基化酶ALKBH5低表达并促进糖尿病视网膜小胶质细胞M1型极化的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dlk1-Dio3印记区域内母本甲基化差异甲基化区Meg8-DMR的功能研究
  • 批准号:
    31771601
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
猪RTL1基因DMR甲基化状态对其印记状态及表达水平的调控
  • 批准号:
    31201791
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
雌激素信号介导Igf2-H19 DMR低甲基化在p,p'-DDE致雄性生殖毒性中的作用
  • 批准号:
    81102161
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF/DMR-BSF: Artificial Semiconductor Nanocrystal Molecules for Charge Carrier Separation
NSF/DMR-BSF:用于电荷载流子分离的人造半导体纳米晶体分子
  • 批准号:
    2026741
  • 财政年份:
    2021
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Theory of Quantum Materials
NSF/DMR-BSF:量子材料理论
  • 批准号:
    2000987
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Synergistic biopolymer co-assembly regulating the emergence of translation and replication in synthetic networks
NSF/DMR-BSF:协同生物聚合物共组装调节合成网络中翻译和复制的出现
  • 批准号:
    2004846
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
RUI: NSF/DMR-BSF: Nonequilibrium Quantum Matter: Timescales and Self-Averaging
RUI:NSF/DMR-BSF:非平衡量子物质:时间尺度和自平均
  • 批准号:
    1936006
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Electronic Correlations and Disorder in Berry materials
NSF/DMR-BSF:浆果材料中的电子相关性和无序性
  • 批准号:
    2002795
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids (NSF-BSF Application)
NSF/DMR-BSF:用于预测固体激发态计算的密度泛函(NSF-BSF 应用)
  • 批准号:
    2015991
  • 财政年份:
    2020
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Quantum Transport in a Helical One-Dimensional System
NSF/DMR-BSF:螺旋一维系统中的量子传输
  • 批准号:
    1904986
  • 财政年份:
    2019
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Liquid Crystals as a Paradigm for Chirality and Topological Defects
NSF/DMR-BSF:液晶作为手性和拓扑缺陷的范例
  • 批准号:
    1901797
  • 财政年份:
    2019
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Understanding Electro-Chemo-Mechanical Processes at the Atomic Level
NSF/DMR-BSF:了解原子水平上的电化学机械过程
  • 批准号:
    1911592
  • 财政年份:
    2019
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
NSF/DMR-BSF: Quantum transport of charge and heat in correlated electron systems
NSF/DMR-BSF:相关电子系统中电荷和热量的量子传输
  • 批准号:
    1742752
  • 财政年份:
    2018
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了