Exploiting emergent scale invariance

利用紧急尺度不变性

基本信息

  • 批准号:
    1719490
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SummaryThis award supports theoretical and computational research and education that aims to hone a powerful fundamental theory into a practical approach toward a more realistic description of a wide variety of phenomena. Important parts of our world fluctuate on many scales. Clouds are wispy, fractals are bumpy, and Rice Krispies crackle. (So does the Earth - earthquakes). Materials, like metal alloys and the membranes of biological cells, can fluctuate on many scales, when their compositions are set near special points. Fifty years ago, the explanation for these fluctuations was discovered to be a kind of scale invariance: these systems look nearly the same after they are magnified, for example big and small cloud wisps look similar. This scale invariance was explained by a theory, describing how the laws governing these systems change when the systems are magnified. The wisps of clouds and the milk in puffed rice have rules that become the same upon changing scale. But this elegant theory has not reached its potential, for example in predicting the weather, or in describing how materials like bone, concrete, and sea-shells form and break. Science can explain the whorls within whorls of turbulence, but it needs to mesh the biggest whorls into the engineer's models designing airplane wings, or the meteorologist's seashores and mountains. This project will build on the PI's recently developed methods for solving this theory more completely and systematically. The PI aims to turn this elegant theory of physics into the bones of a practical engineering tool. In particular, far from these special, scale-invariant points there are well-established methods to calculate the properties of materials and alloys. The PI will develop tools to merge these two descriptions into an integrated, powerful tool for describing complex materials and systems. TECHNICAL SUMMARYThis award supports theoretical and computational research and education that aims to extend the quantitative validity of the renormalization group and enable it to engage more realistic problems. Understanding critical phenomena and emergent scale invariance is a key to many of our scientific and engineering challenges. The current formulation of the field is split between an admiration of universal scaling laws and dense, inscrutable calculations for exactly solvable systems, for example the 2D Ising model, and systems near special points, for example the Ising model in 1D and 4D. These latter calculations often violate the naive power laws and Widom scaling usually expected. The PI has recently used the mathematics of bifurcation theory to arrange these anomalous universality classes into universality families, characterizing the logarithms, exponentials, and invariant combinations of scaling variables, many for the first time. These new methods are closely associated with known techniques for incorporating analytic and singular corrections to scaling, and the PI will combine the new correct critical-point singularities with corrections to scaling to dramatically extend the realm of quantitative validity. The project will use the 2D nonequilibrium random-field Ising model to illustrate both the new predicted scaling forms and the role of corrections to scaling, generating a quantitative theory predicting avalanche sizes and magnetization curves over an enormous range of disorder, until the size scale becomes as small as that of the lattice structure. The project will also develop tools to extract entire phase diagrams and concomitant materials behavior for experiments on cellular membranes, honing and validating the tools using the complex phase diagram of a multiparameter membrane model for microemulsions and tricritical Ising phenomena.
该奖项支持理论和计算研究和教育,旨在将强大的基础理论磨练成一种实用的方法,以更真实地描述各种现象。 我们世界的重要部分在许多尺度上波动。云是纤细的,分形是凹凸不平的,脆米饼是噼啪作响的。(So地震(Earthquakes)材料,如金属合金和生物细胞膜,当它们的成分设置在特定点附近时,可以在许多尺度上波动。50年前,人们发现这些波动的原因是一种尺度不变性:这些系统在放大后看起来几乎一样,例如,大云和小云看起来很相似。这种尺度不变性可以用一种理论来解释,它描述了当系统被放大时,控制这些系统的定律是如何变化的。云的缕缕和爆米花中的牛奶有规则,在改变尺度时变得相同。但是,这个优雅的理论还没有发挥出它的潜力,例如在预测天气方面,或者在描述骨头、混凝土和贝壳等材料如何形成和破裂方面。科学可以解释漩涡中的漩涡,但它需要将最大的漩涡与设计飞机机翼的工程师模型或气象学家的海岸和山脉相结合。这个项目将建立在PI最近开发的更完整和系统地解决这个理论的方法。PI的目标是将这个优雅的物理学理论转化为实用工程工具的核心。特别是,远离这些特殊的,标度不变的点,有完善的方法来计算材料和合金的属性。PI将开发工具,将这两种描述合并为一个集成的,强大的工具,用于描述复杂的材料和系统。该奖项支持理论和计算研究和教育,旨在扩展重整化群的定量有效性,使其能够参与更现实的问题。理解临界现象和涌现尺度不变性是我们许多科学和工程挑战的关键。目前的场的表述分为两种,一种是对普适标度律的崇拜,另一种是对精确可解系统(例如二维伊辛模型)和特殊点附近系统(例如一维和四维伊辛模型)的密集、难以理解的计算。这些后一种计算经常违反通常预期的朴素幂律和Widom缩放。PI最近使用分叉理论的数学将这些异常普适性类安排到普适性家族中,表征了尺度变量的非线性、指数和不变组合,其中许多是第一次。这些新的方法与已知的技术密切相关,用于将分析和奇异校正结合到缩放中,PI将联合收割机将新的正确的临界点奇异性与缩放校正相结合,以显著地扩展定量有效性的范围。该项目将使用2D非平衡随机场伊辛模型来说明新预测的缩放形式和缩放校正的作用,产生一个定量理论,预测雪崩大小和磁化曲线在巨大的无序范围内,直到尺寸尺度变得像晶格结构一样小。该项目还将开发工具来提取完整的相图和伴随材料行为,用于细胞膜实验,并使用微乳液和三临界伊辛现象的多参数膜模型的复杂相图来磨练和验证这些工具。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Normal Form for Renormalization Groups
重整化群的范式
  • DOI:
    10.1103/physrevx.9.021014
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Raju, Archishman;Clement, Colin B.;Hayden, Lorien X.;Kent-Dobias, Jaron P.;Liarte, Danilo B.;Rocklin, D. Zeb;Sethna, James P.
  • 通讯作者:
    Sethna, James P.
Multifunctional twisted kagome lattices: Tuning by pruning mechanical metamaterials
  • DOI:
    10.1103/physreve.101.063001
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Liarte, Danilo B.;Stenull, O.;Lubensky, T. C.
  • 通讯作者:
    Lubensky, T. C.
Unusual scaling for two-dimensional avalanches: Curing the faceting and scaling in the lower critical dimension
二维雪崩的异常缩放:固化较低临界维度中的刻面和缩放
  • DOI:
    10.1103/physrevresearch.1.033060
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Hayden, L. X.;Raju, Archishman;Sethna, James P.
  • 通讯作者:
    Sethna, James P.
Jamming as a Multicritical Point
  • DOI:
    10.1103/physrevlett.122.128006
  • 发表时间:
    2019-03-28
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Liarte, Danilo B.;Mao, Xiaoming;Lubensky, T. C.
  • 通讯作者:
    Lubensky, T. C.
Yield Precursor Dislocation Avalanches in Small Crystals: The Irreversibility Transition
  • DOI:
    10.1103/physrevlett.123.035501
  • 发表时间:
    2019-07-15
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ni, Xiaoyue;Zhang, Haolu;Greer, Julia R.
  • 通讯作者:
    Greer, Julia R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Sethna其他文献

Implications of Criticality in Membrane Bound Processes
  • DOI:
    10.1016/j.bpj.2009.12.1550
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin B. Machta;Sarah Veatch;Stefanos Papanikolaou;James Sethna
  • 通讯作者:
    James Sethna

James Sethna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Sethna', 18)}}的其他基金

Collaborative Research: CDS&E: Systematic Multiscale Modeling using the Knowledgebase of Interatomic Models (KIM)
合作研究:CDS
  • 批准号:
    1408717
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
  • 批准号:
    1312160
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Navigating Frustration
克服挫折
  • 批准号:
    1308089
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Extracting Theory from Data: Magnets, High Tc Superconductors, and Sloppy Models
从数据中提取理论:磁铁、高温超导体和草率模型
  • 批准号:
    1005479
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research:CDI-Type II: The Knowledge-Base of Interatomic Models (KIM)
合作研究:CDI-Type II:原子间模型知识库(KIM)
  • 批准号:
    0941095
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Universal Features of Multiparameter Models: From Systems Biology to Critical Phenomena
多参数模型的普遍特征:从系统生物学到关键现象
  • 批准号:
    0705167
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ITR: Statistical Mechanics of Sloppy Models: From Signal Transduction in the Cell Cycle to Forest Modeling and the Nitrogen Cycle
ITR:草率模型的统计力学:从细胞周期中的信号转导到森林模型和氮循环
  • 批准号:
    0218475
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
KDI: Multiscale Modeling of Defects in Solids
KDI:固体缺陷的多尺度建模
  • 批准号:
    9873214
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Microstructure: Dislocations, Creases, and Grains
微观结构:位错、折痕和晶粒
  • 批准号:
    9805422
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Dynamics of Extended Non-Equilibrium Systems: Hysteresis, Electromigration, and Defect Chaos
扩展非平衡系统的动力学:磁滞、电迁移和缺陷混沌
  • 批准号:
    9419506
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

推广的Hubbard模型中的emergent现象研究
  • 批准号:
    11474061
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
关于Emergent宇宙的相关研究
  • 批准号:
    11175093
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Atomic scale dynamics of correlated materials and emergent quantum states
相关材料和涌现量子态的原子尺度动力学
  • 批准号:
    RGPIN-2017-05470
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic scale dynamics of correlated materials and emergent quantum states
相关材料和涌现量子态的原子尺度动力学
  • 批准号:
    RGPIN-2017-05470
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding the emergent macro-scale impacts caused by the rapid expansion of Offshore Wind within The North Sea System
了解北海系统内海上风电快速扩张所造成的宏观影响
  • 批准号:
    2744397
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Impact of regulatory cross-talk on the pathophysiology of emergent acapsular group A streptococcus
监管串扰对新出现的无荚膜 A 族链球菌病理生理学的影响
  • 批准号:
    10301505
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Impact of regulatory cross-talk on the pathophysiology of emergent acapsular group A streptococcus
监管串扰对新出现的无荚膜 A 族链球菌病理生理学的影响
  • 批准号:
    10449272
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Scale issues in connected landscapes: Resolving emergent behaviour for improved hydrologic modelling
互联景观中的规模问题:解决紧急行为以改进水文建模
  • 批准号:
    RGPIN-2017-03920
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: MSA: Upscaling soil organic carbon measurements at the continental scale: Evaluating emergent ecosystem properties using multivariate quantitative methods
合作研究:MSA:扩大大陆尺度土壤有机碳测量:使用多元定量方法评估新兴生态系统特性
  • 批准号:
    2106137
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: MSA: Upscaling soil organic carbon measurements at the continental scale: Evaluating emergent ecosystem properties using multivariate quantitative methods
合作研究:MSA:扩大大陆尺度土壤有机碳测量:使用多元定量方法评估新兴生态系统特性
  • 批准号:
    2106138
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
  • 批准号:
    10841794
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
  • 批准号:
    10622873
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了