Dynamics of Extended Non-Equilibrium Systems: Hysteresis, Electromigration, and Defect Chaos

扩展非平衡系统的动力学:磁滞、电迁移和缺陷混沌

基本信息

  • 批准号:
    9419506
  • 负责人:
  • 金额:
    $ 21.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-01-01 至 1997-12-31
  • 项目状态:
    已结题

项目摘要

9419506 Sethna Collective behavior emerging on long length scales will be explored in three systems. First, the investigator will study disorder-induced nucleation of bursts associated with certain hysteresis loops and investigate innovative applications to magnetic recording which result. Second, the dynamics of large, mobile voids will be studied analytically and using realistic simulations of bulk aluminum and copper. This work will help understand failure present in microfabricated devices with high current densities. Third, chaotic states in two-dimensional systems described by partial differential equations whose topological defects move in a chaotic, turbulent manner will be studied. More general coarse-graining methods will be used to investigate phase transitions and the effects of boundaries, and to understand the nature of noise in these systems. %%% For many systems, even though the underlying physics of the interactions of the individual particles is complex, on a large scale rather simple laws can often be found. Three examples of such systems that are forced to be far from equilibrium will be investigated theoretically. First, certain systems, such as magnets, behave differently depending on whether a parameter (such as an external magnetic field) is increased or decreased. Such systems will be investigated and these results will be applied to magnetic recording. Second, the movement of voids (pockets of air) in materials such as aluminum and copper will be investigated using equations and computer simulations, with a goal to better understand failure in microfabricated devices with high currents flowing through them. Third, the behavior of chaotic noise and defects will be investigated in certain classes of two-dimensional systems, such as fluids that are forced to flow and heart muscle walls. ***
9419506 Sethna在长尺度上出现的集体行为将在三个系统中进行探讨。首先,研究者将研究与某些迟滞环相关的脉冲的无序诱导成核,并研究其在磁记录中的创新应用。其次,将分析研究大型可移动空隙的动力学,并使用大块铝和铜的真实模拟。这项工作将有助于理解高电流密度微制造器件中存在的故障。第三,将研究由偏微分方程描述的二维系统的混沌状态,该系统的拓扑缺陷以混沌、湍流的方式运动。更一般的粗粒化方法将用于研究相变和边界的影响,并了解这些系统中噪声的性质。对于许多系统,尽管单个粒子相互作用的基本物理原理是复杂的,但在大尺度上往往可以找到相当简单的定律。这类系统被迫远离平衡的三个例子将从理论上进行研究。首先,某些系统(如磁铁)的行为会因参数(如外部磁场)的增加或减少而有所不同。这些系统将被研究,这些结果将应用于磁记录。其次,将使用方程和计算机模拟来研究铝和铜等材料中的空隙(空气袋)的运动,目的是更好地理解高电流流过微制造设备的故障。第三,混沌噪声和缺陷的行为将在某些类型的二维系统中进行研究,例如被迫流动的流体和心肌壁。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Sethna其他文献

Implications of Criticality in Membrane Bound Processes
  • DOI:
    10.1016/j.bpj.2009.12.1550
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Benjamin B. Machta;Sarah Veatch;Stefanos Papanikolaou;James Sethna
  • 通讯作者:
    James Sethna

James Sethna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Sethna', 18)}}的其他基金

Exploiting emergent scale invariance
利用紧急尺度不变性
  • 批准号:
    1719490
  • 财政年份:
    2017
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: Systematic Multiscale Modeling using the Knowledgebase of Interatomic Models (KIM)
合作研究:CDS
  • 批准号:
    1408717
  • 财政年份:
    2014
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
  • 批准号:
    1312160
  • 财政年份:
    2013
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Navigating Frustration
克服挫折
  • 批准号:
    1308089
  • 财政年份:
    2013
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Extracting Theory from Data: Magnets, High Tc Superconductors, and Sloppy Models
从数据中提取理论:磁铁、高温超导体和草率模型
  • 批准号:
    1005479
  • 财政年份:
    2010
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Collaborative Research:CDI-Type II: The Knowledge-Base of Interatomic Models (KIM)
合作研究:CDI-Type II:原子间模型知识库(KIM)
  • 批准号:
    0941095
  • 财政年份:
    2009
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Universal Features of Multiparameter Models: From Systems Biology to Critical Phenomena
多参数模型的普遍特征:从系统生物学到关键现象
  • 批准号:
    0705167
  • 财政年份:
    2007
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
ITR: Statistical Mechanics of Sloppy Models: From Signal Transduction in the Cell Cycle to Forest Modeling and the Nitrogen Cycle
ITR:草率模型的统计力学:从细胞周期中的信号转导到森林模型和氮循环
  • 批准号:
    0218475
  • 财政年份:
    2002
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
KDI: Multiscale Modeling of Defects in Solids
KDI:固体缺陷的多尺度建模
  • 批准号:
    9873214
  • 财政年份:
    1998
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Standard Grant
Microstructure: Dislocations, Creases, and Grains
微观结构:位错、折痕和晶粒
  • 批准号:
    9805422
  • 财政年份:
    1998
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

Extended Synaptotagmins在内质网与细胞质膜互作中的机制研究
  • 批准号:
    91854117
  • 批准年份:
    2018
  • 资助金额:
    92.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Micro-Scale Additive Manufacturing of Strain Gauges on Non-planar Surface of Jet Engine Blades: Extended Objectives
喷气发动机叶片非平面表面应变计的微尺度增材制造:扩展目标
  • 批准号:
    521292-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Collaborative Research and Development Grants
Functionalization of cellulose nanocrystals using catechol primers and hydrophobes for extended applications in non-polar media
使用儿茶酚引物和疏水物对纤维素纳米晶体进行功能化,以扩展在非极性介质中的应用
  • 批准号:
    542309-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Engage Grants Program
Micro-Scale Additive Manufacturing of Strain Gauges on Non-planar Surface of Jet Engine Blades: Extended Objectives
喷气发动机叶片非平面表面应变计的微尺度增材制造:扩展目标
  • 批准号:
    521292-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Collaborative Research and Development Grants
Extended dynamic facilitation theory and non-equilibrium phase transition in athermal dense molecular systems
扩展动态促进理论和非热致密分子系统中的非平衡相变
  • 批准号:
    17K05574
  • 财政年份:
    2017
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of non-linear waves in polyatomic gases based on extended thermodynamics and its engineering applications
基于扩展热力学的多原子气体非线性波分析及其工程应用
  • 批准号:
    16K17555
  • 财政年份:
    2016
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Simulating Non-equilibrium Processes over Extended Time- and Length-Scales using Parallel Accelerated Dynamics
使用并行加速动力学模拟扩展时间和长度尺度上的非平衡过程
  • 批准号:
    1410840
  • 财政年份:
    2014
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Continuing Grant
Extended Nuclear Deterrence and the Restraint of Non-Nuclear Allies: Material Cooperation and Strategic Dialogue
扩大核威慑与非核盟友的克制:实质性合作与战略对话
  • 批准号:
    DP140101478
  • 财政年份:
    2014
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Discovery Projects
Functional analysis of non-resistance-factors of the pandemic Extended-spectrum beta -lactamase producing Escherichia coli sequence types ST131 and ST648
大流行产超广谱β-内酰胺酶大肠杆菌序列类型ST131和ST648的非耐药因子的功能分析
  • 批准号:
    239752541
  • 财政年份:
    2013
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Research Grants
Digitisation / Cataloguing of non-textual objects: Digitalisation of historical and contemporary musical instruments in extended visualisations
非文本对象的数字化/编目:扩展可视化中历史和当代乐器的数字化
  • 批准号:
    203751116
  • 财政年份:
    2012
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Cataloguing and Digitisation (Scientific Library Services and Information Systems)
Measurement of the life-time of Kπatom and its Lamb-shift-Test of QCD in the non-perturvative region by extended DIRAC experiment
扩展 DIRAC 实验测量 Kπ 原子寿命及其非扰动区 QCD 兰姆位移检验
  • 批准号:
    21540306
  • 财政年份:
    2009
  • 资助金额:
    $ 21.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了