Bernstein-Bezier Techniques for High Order Time-Domain Discontinuous Galerkin Methods
高阶时域间断伽辽金方法的 Bernstein-Bezier 技术
基本信息
- 批准号:1719818
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Simulations of wave propagation are the backbone of numerous applications in a diverse set of areas, such as medical imaging, predictive seismology, and engineering design. Many applications require repeated high resolution simulations of waves in domains with complex boundaries or features. For example, brain imaging methods require dealing with wave propagation through changing media within the human body, such as transitions between different types of tissue or transitions from tissue to bone. The target application areas require numerical simulations which are reliable, accurate, and efficient. However, incorporating accurate approximations of complex media and geometries typically sacrifices one or more of these properties, resulting in simulations which are accurate but slow, fast but inaccurate, or unstable outside of specific settings. The proposed project aims to develop reliable, provably stable methods for wave propagation in complex media and geometries which retain accuracy and efficiency. The project will study numerical wave propagation using high order discontinuous Galerkin (DG) methods, and consists of two main tasks. The first task will leverage high performance architectures such as Graphics Processing Units (GPUs), as well as the recently developed weight-adjusted and Bernstein-Bezier DG methods. Weight-adjusted DG methods achieve provable stability and high order accuracy in the presence of variable media, but have a high computational complexity with respect to the order of approximation. Bernstein-Bezier DG methods achieve an optimal computational complexity with respect to the order, but require low-resolution models of media and geometry in order to do so. The first task will combine these two approaches to construct methods for wave propagation in varying media which are stable, high order accurate, and have low computational complexity. The second task will be to improve the reliability of modeling complex boundaries using curvilinear unstructured meshes. Typical methods for producing curvilinear meshes can result in elements unsuitable for numerical simulation. The second task will seek robust methods for constructing high order approximations of geometry by leveraging Bernstein-Bezier representations of polynomials, which are closely related to shape properties of the underlying function.
波传播的模拟是医学成像、预测地震学和工程设计等不同领域中众多应用的基础。 许多应用需要在具有复杂边界或特征的域中重复进行高分辨率的波模拟。 例如,脑成像方法需要处理通过改变人体内的介质的波传播,例如不同类型的组织之间的过渡或从组织到骨骼的过渡。 目标应用领域需要可靠、准确、高效的数值模拟。 然而,结合复杂介质和几何形状的精确近似通常会牺牲一个或多个这些属性,导致模拟准确但缓慢,快速但不准确,或在特定设置之外不稳定。 该项目旨在为复杂介质和几何形状中的波传播开发可靠、可证明稳定的方法,同时保持准确性和效率。 该项目将研究使用高阶间断伽辽金(DG)方法的数值波传播,并包括两个主要任务。 第一个任务将利用高性能架构,如图形处理单元(GPU),以及最近开发的权重调整和Bernstein-Bezier DG方法。 权值调整DG方法在可变介质的情况下具有可证明的稳定性和高阶精度,但在近似阶数方面具有较高的计算复杂度。 Bernstein-Bezier DG方法实现了相对于阶数的最佳计算复杂度,但需要低分辨率的介质和几何模型才能实现。 第一个任务是将这两种方法联合收割机结合起来,构造出稳定的、高阶精度的、计算复杂度低的波动在变化介质中传播的方法。 第二个任务是提高使用曲线非结构网格模拟复杂边界的可靠性。 用于产生曲线网格的典型方法可能导致不适合于数值模拟的单元。第二个任务将寻求鲁棒的方法,通过利用多项式的Bernstein-Bezier表示来构建几何的高阶近似,这与底层函数的形状属性密切相关。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: Explicit time-stepping and efficient mass matrix inversion
- DOI:10.1016/j.cma.2018.01.022
- 发表时间:2017-08
- 期刊:
- 影响因子:7.2
- 作者:Jesse Chan;John A. Evans
- 通讯作者:Jesse Chan;John A. Evans
Weight-adjusted discontinuous Galerkin methods: Matrix-valued weights and elastic wave propagation in heterogeneous media: Weight-adjusted discontinuous Galerkin methods: Matrix-valued weights and elastic wave propagation in heterogeneous media
权重调整间断伽辽金方法:异质介质中的矩阵定值权重和弹性波传播:权重调整间断伽辽金方法:异质介质中的矩阵定值权重和弹性波传播
- DOI:10.1002/nme.5720
- 发表时间:2018
- 期刊:
- 影响因子:2.9
- 作者:Chan, Jesse
- 通讯作者:Chan, Jesse
EFFICIENT ENTROPY STABLE GAUSS COLLOCATION METHODS
- DOI:10.1137/18m1209234
- 发表时间:2019-01-01
- 期刊:
- 影响因子:3.1
- 作者:Chan, Jesse;Fernandez, David C. Del Rey;Carpenter, Mark H.
- 通讯作者:Carpenter, Mark H.
On discretely entropy stable weight-adjusted discontinuous Galerkin methods: curvilinear meshes
- DOI:10.1016/j.jcp.2018.11.010
- 发表时间:2019-02-01
- 期刊:
- 影响因子:4.1
- 作者:Chan, Jesse;Wilcox, Lucas C.
- 通讯作者:Wilcox, Lucas C.
On discretely entropy conservative and entropy stable discontinuous Galerkin methods
- DOI:10.1016/j.jcp.2018.02.033
- 发表时间:2018-06-01
- 期刊:
- 影响因子:4.1
- 作者:Chan, Jesse
- 通讯作者:Chan, Jesse
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Chan其他文献
Multi-patch discontinuous Galerkin spline finite element methods for time-domain wave propagation
时域波传播的多面片间断伽辽金样条有限元法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jesse Chan;John A. Evans - 通讯作者:
John A. Evans
Capital Budgets as Incentives
作为激励的资本预算
- DOI:
10.2139/ssrn.4742217 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jesse Chan;Abhishek Ramchandani - 通讯作者:
Abhishek Ramchandani
A short note on the penalty flux parameter for first order discontinuous Galerkin formulations
关于一阶不连续伽辽金公式罚通量参数的简短说明
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jesse Chan;T. Warburton - 通讯作者:
T. Warburton
Efficient Implementation of Modern Entropy Stable and Kinetic Energy Preserving Discontinuous Galerkin Methods for Conservation Laws
现代熵稳定动能守恒间断伽辽金守恒定律方法的高效实现
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.7
- 作者:
Hendrik Ranocha;Michael Schlottke;Jesse Chan;Andrés M. Rueda;A. R. Winters;F. Hindenlang;G. Gassner - 通讯作者:
G. Gassner
Reduced storage nodal discontinuous Galerkin methods on semi-structured prismatic meshes
半结构化棱柱网格上的减少存储节点不连续伽辽金方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.9
- 作者:
Jesse Chan;Zheng Wang;Russell J. Hewett;T. Warburton - 通讯作者:
T. Warburton
Jesse Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesse Chan', 18)}}的其他基金
CAREER: Tailored Entropy Stable Discretizations of Nonlinear Conservation Laws
职业:非线性守恒定律的定制熵稳定离散化
- 批准号:
1943186 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Algorithms for Multiwave Imaging in Complex Media: Theory and Computation
合作研究:复杂介质中多波成像的改进算法:理论与计算
- 批准号:
1712639 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
利用三次Bezier曲线扩大几何自动作图范围的研究
- 批准号:10871223
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:面上项目
拟中插式及Bezier型算子的逼近研究
- 批准号:10571040
- 批准年份:2005
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Generalization of Non-Uniform Rational Bezier Splines: Theory and Applications
非均匀有理贝塞尔样条的推广:理论与应用
- 批准号:
1661597 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Improving Virtual Product Development Through Isogeometric Analysis Based on Rational Triangular Bezier Splines
基于有理三角贝塞尔样条的等几何分析改进虚拟产品开发
- 批准号:
1435072 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Bezier approximation of nonuniform rational b-splines
非均匀有理 B 样条的贝塞尔近似
- 批准号:
383088-2009 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
University Undergraduate Student Research Awards
Approximate continuity for bezier and B-spline surfaces
贝塞尔曲线和 B 样条曲面的近似连续性
- 批准号:
138173-2004 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Approximate continuity for bezier and B-spline surfaces
贝塞尔曲线和 B 样条曲面的近似连续性
- 批准号:
138173-2004 - 财政年份:2007
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Approximate continuity for bezier and B-spline surfaces
贝塞尔曲线和 B 样条曲面的近似连续性
- 批准号:
138173-2004 - 财政年份:2006
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Approximate continuity for bezier and B-spline surfaces
贝塞尔曲线和 B 样条曲面的近似连续性
- 批准号:
138173-2004 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Approximate continuity for bezier and B-spline surfaces
贝塞尔曲线和 B 样条曲面的近似连续性
- 批准号:
138173-2004 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Discovery Grants Program - Individual
Faculty in Industry: Development of Low-Harmonic Bezier andSpline Curves For Motion Planning and Design of High-Speed Machinery
工业教师:开发用于高速机械运动规划和设计的低谐波贝塞尔曲线和样条曲线
- 批准号:
9632173 - 财政年份:1996
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
The Design of Geological Structures Using Bezier Polynomials
使用贝塞尔多项式设计地质结构
- 批准号:
9304879 - 财政年份:1993
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




