CAREER: Tailored Entropy Stable Discretizations of Nonlinear Conservation Laws
职业:非线性守恒定律的定制熵稳定离散化
基本信息
- 批准号:1943186
- 负责人:
- 金额:$ 44.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The simulation of fluid flow is foundational to many scientific fields, ranging from environmental and aerospace engineering to solar physics. However, next-generation modeling and analysis is computationally challenging using existing tools. Tailored numerical methods have the potential to address such limitations. For example, projection-based reduced order models decrease computational costs associated with many-query scenarios (such as engineering design or uncertainty quantification) by replacing a high fidelity model with a less expensive low-dimensional surrogate. Similarly, high order accurate schemes are particularly effective at resolving fine-scale features in transient vorticular flows. Unfortunately, when applied to the equations of fluid dynamics, these numerical methods experience non-physical instabilities which can cause simulations to fail unexpectedly. The goal of this project is to enable robust and efficient simulations using discretely "entropy stable" schemes. By building fundamental energetic principles directly into a discretization, entropy stable methods retain accuracy while inheriting verifiable properties which improve "out-of-the-box" robustness. Discretely entropy stable high order discretizations for nonlinear conservation laws have seen rapid development over the last 7 years. This project will extend this methodology to three areas where existing approaches are suboptimal or unavailable: (1) high order methods on non-conforming meshes, (2) high order physical-frame discretizations for domain boundaries with fine-scale features, and (3) reduced order modeling. Additionally, the PI will integrate aspects of the proposed research with an educational program aimed at promoting computational science and improving retention among college students and K-12 teachers. Specifically, the PI will (1) design and supervise senior capstone research projects for engineering undergraduates, and (2) organize a summer research program for K-12 teachers centered around numerical modeling and discovery-based learning. The summer research program will also provide graduate students with mentoring experience, and the PI will follow up by partnering with teachers to incorporate concepts from numerical computing into reusable classroom modules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流体流动的模拟是许多科学领域的基础,从环境和航天工程到太阳物理。然而,使用现有工具进行下一代建模和分析在计算上具有挑战性。量身定制的数值方法有可能解决这些限制。例如,基于投影的降阶模型通过将高保真模型替换为更便宜的低维代理来降低与许多查询场景(例如工程设计或不确定性量化)相关联的计算成本。同样,高阶精度格式在解决瞬变涡流中的细尺度特征方面特别有效。不幸的是,当应用于流体动力学方程时,这些数值方法会遇到非物理不稳定性,这可能会导致模拟意外失败。该项目的目标是使用离散的“熵稳定”方案实现健壮和高效的模拟。通过直接将基本能量原理构建为离散化,熵稳定方法在继承可验证属性的同时保持准确性,这些属性提高了“开箱即用”的健壮性。离散熵稳定的非线性守恒律的高阶离散化在过去的7年中得到了迅速的发展。该项目将把这一方法扩展到现有方法次优或不可用的三个领域:(1)非协调网格上的高阶方法,(2)具有精细特征的区域边界的高阶物理框架离散化,以及(3)降阶建模。此外,PI将把拟议研究的各个方面与一项旨在促进计算科学和提高大学生和K-12教师保留率的教育计划相结合。具体地说,PI将(1)为工科本科生设计和监督高级顶峰研究项目,(2)为K-12教师组织以数值建模和基于发现的学习为中心的暑期研究项目。暑期研究项目还将为研究生提供指导经验,PI将与教师合作,将数值计算的概念纳入可重复使用的课堂模块。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-order methods for hypersonic flows with strong shocks and real chemistry
- DOI:10.1016/j.jcp.2023.112310
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:A. Peyvan;K. Shukla;Jesse Chan;G. Karniadakis
- 通讯作者:A. Peyvan;K. Shukla;Jesse Chan;G. Karniadakis
Entropy-stable Gauss collocation methods for ideal magneto-hydrodynamics
理想磁流体动力学的熵稳定高斯配置方法
- DOI:10.1016/j.jcp.2022.111851
- 发表时间:2023
- 期刊:
- 影响因子:4.1
- 作者:Rueda-Ramírez, Andrés M.;Hindenlang, Florian J.;Chan, Jesse;Gassner, Gregor J.
- 通讯作者:Gassner, Gregor J.
Discrete Adjoint Computations for Relaxation Runge–Kutta Methods
松弛龙格 - 库塔方法的离散伴随计算
- DOI:10.1007/s10915-023-02102-y
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Bencomo, Mario J.;Chan, Jesse
- 通讯作者:Chan, Jesse
Provably stable flux reconstruction high-order methods on curvilinear elements
曲线元素上可证明稳定的通量重建高阶方法
- DOI:10.1016/j.jcp.2022.111259
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Cicchino, Alexander;Del Rey Fernández, David C.;Nadarajah, Siva;Chan, Jesse;Carpenter, Mark H.
- 通讯作者:Carpenter, Mark H.
Efficient computation of Jacobian matrices for entropy stable summation-by-parts schemes
熵稳定分部求和方案的雅可比矩阵的高效计算
- DOI:10.1016/j.jcp.2021.110701
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Chan, Jesse;Taylor, Christina G.
- 通讯作者:Taylor, Christina G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse Chan其他文献
Multi-patch discontinuous Galerkin spline finite element methods for time-domain wave propagation
时域波传播的多面片间断伽辽金样条有限元法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jesse Chan;John A. Evans - 通讯作者:
John A. Evans
Capital Budgets as Incentives
作为激励的资本预算
- DOI:
10.2139/ssrn.4742217 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jesse Chan;Abhishek Ramchandani - 通讯作者:
Abhishek Ramchandani
A short note on the penalty flux parameter for first order discontinuous Galerkin formulations
关于一阶不连续伽辽金公式罚通量参数的简短说明
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jesse Chan;T. Warburton - 通讯作者:
T. Warburton
Reduced storage nodal discontinuous Galerkin methods on semi-structured prismatic meshes
半结构化棱柱网格上的减少存储节点不连续伽辽金方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.9
- 作者:
Jesse Chan;Zheng Wang;Russell J. Hewett;T. Warburton - 通讯作者:
T. Warburton
Efficient Implementation of Modern Entropy Stable and Kinetic Energy Preserving Discontinuous Galerkin Methods for Conservation Laws
现代熵稳定动能守恒间断伽辽金守恒定律方法的高效实现
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.7
- 作者:
Hendrik Ranocha;Michael Schlottke;Jesse Chan;Andrés M. Rueda;A. R. Winters;F. Hindenlang;G. Gassner - 通讯作者:
G. Gassner
Jesse Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jesse Chan', 18)}}的其他基金
Bernstein-Bezier Techniques for High Order Time-Domain Discontinuous Galerkin Methods
高阶时域间断伽辽金方法的 Bernstein-Bezier 技术
- 批准号:
1719818 - 财政年份:2017
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Collaborative Research: Improved Algorithms for Multiwave Imaging in Complex Media: Theory and Computation
合作研究:复杂介质中多波成像的改进算法:理论与计算
- 批准号:
1712639 - 财政年份:2017
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
相似海外基金
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Towards Perpetually Limited Corrosion of Steel in Concrete with Tailored Interfaces
事业:通过定制界面永久限制混凝土中钢的腐蚀
- 批准号:
2338983 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
- 批准号:
2335725 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Standard Grant
CAREER: Decoding the Code of Glycan-Collectin Interactions: Computational Engineering of Surfactant Proteins for Tailored Glycan Recognition
职业:解码聚糖-收集素相互作用的密码:用于定制聚糖识别的表面活性剂蛋白的计算工程
- 批准号:
2338401 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Continuing Grant
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
- 批准号:
EP/Y034392/1 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Research Grant
Integrating universal and tailored approaches across the continuum of mental health and substance use supports: Supporting the implementation and coordination of the Icelandic Prevention Model and Integrated Youth Services
在心理健康和药物滥用支持的连续过程中整合通用和量身定制的方法:支持冰岛预防模式和综合青年服务的实施和协调
- 批准号:
477940 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Salary Programs
Real-Time Monitoring Networks and Transport Emissions for Tailored Zero Pollution Action Plans in European Cities
实时监测网络和交通排放,为欧洲城市量身定制零污染行动计划
- 批准号:
10107404 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
EU-Funded
Design of graphene for tailored functionalities: a novel mathematical approach
定制功能的石墨烯设计:一种新颖的数学方法
- 批准号:
24K06797 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
IMPLEMENTATION OF A CULTURALLY TAILORED DECENTRALIZATION PROGRAMME FOR SNAKEBITE TREATMENT IN INDIGENOUS COMMUNITIES IN THE BRAZILIAN AMAZONIA
实施针对巴西亚马逊土著社区蛇咬伤治疗的文化定制分散化计划
- 批准号:
MR/Y019709/1 - 财政年份:2024
- 资助金额:
$ 44.99万 - 项目类别:
Research Grant
Preventing obesity through Biologically and bEhaviorally Tailored inTERventions for you | BETTER4U
通过为您量身定制的生物学和行为干预措施来预防肥胖 |
- 批准号:
10093560 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
EU-Funded