Efficient, Adaptive, and Convergent Numerical Methods for Phase Field Equations with Applications

相场方程的高效、自适应和收敛数值方法及其应用

基本信息

  • 批准号:
    1719854
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

This project focuses on the design and application of efficient computational algorithms for approximating the solutions to models describing various physical phenomena, including multi-phase fluid flow, tissue growth, phase transformations, and polymer processing. The investigator will study models that apply to applications that include optimizing organic photovoltaic devices for energy conversion; predicting cancerous tumor growth; simulating complex biological flows involving sub-cellular structures like endoplasmic reticulum; and designing durable semiconductor and energy storage materials. As a central pillar of this project, he will continue to develop his software package, BSAM, based on the efficient algorithms developed in the research. This software package, which is, and will always be, freely available and open source, is designed to solve a broad spectrum of nonlinear, multi-physics partial differential equations, in two and three dimensions. This tool is ultimately useful for researchers from many disciplines and provides the capability to efficiently simulate complex phenomena, without the need to reinvent algorithms or redesign code. The principal investigator will examine high-order, highly nonlinear partial differential equations through focus on three specific project goals. These include the design and rigorous numerical analysis of high-order energy stable numerical schemes, the design and analysis of algorithms and software for efficient two and three-dimensional time-space adaptive modeling and simulation, and the design and rigorous analysis of novel, nearly-optimally complex preconditioned nonlinear solvers.  The models under examination in the project describe a number of physical processes, including solidification; grain boundary dynamics; crack propagation; tumor growth; two-phase polymer flows; organic photovoltaic processing; and complex biological flows involving lipid bilayers. Because the equations under study are coupled systems of highly nonlinear, high-order partial differential equations, the analysis of their solutions and the design of efficient and reliable numerical methods that give rise to convergent approximations is a non-trivial task. The principal investigator will design unconditionally energy stable, second and third-order-in-time approximations and aims to rigorously prove that the schemes are optimally convergent. He will implement optimally or nearly-optimally efficient solvers that take advantage of the variational/convexity structure of the proposed schemes, producing sophisticated numerical software.
该项目的重点是设计和应用高效的计算算法,用于近似描述各种物理现象的模型的解决方案,包括多相流体流动,组织生长,相变和聚合物加工。研究人员将研究适用于以下应用的模型,包括优化用于能量转换的有机光伏器件;预测癌性肿瘤生长;模拟涉及内质网等亚细胞结构的复杂生物流;以及设计耐用的半导体和储能材料。作为该项目的核心支柱,他将继续开发他的软件包BSAM,基于研究中开发的高效算法。这个软件包,这是,并将永远是,免费提供和开源,旨在解决广泛的非线性,多物理偏微分方程,在二维和三维。该工具最终对来自许多学科的研究人员有用,并提供了有效模拟复杂现象的能力,而无需重新发明算法或重新设计代码。首席研究员将通过专注于三个特定的项目目标来研究高阶,高度非线性偏微分方程。其中包括高阶能量稳定数值格式的设计和严格的数值分析,有效的二维和三维时空自适应建模和模拟的算法和软件的设计和分析,以及新颖的、接近最优的复杂预处理非线性求解器的设计和严格的分析。晶界动力学;裂纹扩展;肿瘤生长;两相聚合物流动;有机光伏处理;以及涉及脂质双层的复杂生物流动。由于所研究的方程是高度非线性的高阶偏微分方程的耦合系统,因此分析其解并设计有效可靠的数值方法来产生收敛近似是一项重要的任务。首席研究员将设计无条件能量稳定,二阶和三阶时间近似,并旨在严格证明该计划是最佳收敛的。他将实现最佳或接近最佳效率的求解器,利用拟议方案的变分/凸性结构,产生复杂的数值软件。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convexity splitting in a phase field model for surface diffusion
  • DOI:
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Backofen;S. Wise;M. Salvalaglio;A. Voigt
  • 通讯作者:
    R. Backofen;S. Wise;M. Salvalaglio;A. Voigt
An Energy Stable BDF2 Fourier Pseudo-Spectral Numerical Scheme for the Square Phase Field Crystal Equation
  • DOI:
    10.4208/cicp.2019.js60.10
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kelong Cheng;Cheng Wang;S. Wise
  • 通讯作者:
    Kelong Cheng;Cheng Wang;S. Wise
Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation
函数化 Cahn-Hilliard 方程的全局时间 Gevrey 正则解
A weakly nonlinear, energy stable scheme for the strongly anisotropic Cahn-Hilliard equation and its convergence analysis
  • DOI:
    10.1016/j.jcp.2019.109109
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kelong Cheng;Cheng Wang;S. Wise
  • 通讯作者:
    Kelong Cheng;Cheng Wang;S. Wise
A SECOND ORDER ENERGY STABLE SCHEME FOR THE CAHN-HILLIARD-HELE-SHAW EQUATIONS
CAHN-HILLIARD-HELE-SHAW方程的二阶能量稳定方案
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Wise其他文献

TROPOELASTIN-BOUND PLASMA-ACTIVATED STENTS STRIKINGLY REDUCE THROMBOGENICITY WHILE SIMULTANEOUSLY INHIBITING NEOINTIMAL HYPERPLASIA
  • DOI:
    10.1016/s0735-1097(16)30166-8
  • 发表时间:
    2016-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Steven Wise;Miguel Santos;Praveesuda Michael;Anna Waterhouse;Juichien Hung;Anthony Weiss;Marcela Bilek;Martin Ng
  • 通讯作者:
    Martin Ng
A Synthetic Internal Mammary Artery
  • DOI:
    10.1016/j.hlc.2010.10.034
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Byrom;Steven Wise;Paul Bannon;Anthony Weiss;Martin Ng
  • 通讯作者:
    Martin Ng
Synthetic Vascular Conduits for Coronary Artery Bypass Surgery. Synopsis and State of the Art
  • DOI:
    10.1016/j.hlc.2010.11.020
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Byrom;Steven Wise;Anthony Weiss;Martin Ng;Paul Bannon
  • 通讯作者:
    Paul Bannon

Steven Wise的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Wise', 18)}}的其他基金

Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
  • 批准号:
    2012634
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Efficient, Adaptive, and Convergent Numerical Methods for Phase Field and Phase Field Crystal Equations with Applications
相场和相场晶体方程的高效、自适应和收敛数值方法及其应用
  • 批准号:
    1418692
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stable and Efficient Convexity-Splitting Schemes for Bistable Gradient PDEs
合作研究:双稳态梯度偏微分方程的稳定且高效的凸性分裂方案
  • 批准号:
    1115390
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Modeling of Solid Tumor Growth
合作研究:实体瘤生长的多尺度建模
  • 批准号:
    0818030
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

Personalised Adaptive Medicine
个性化适应性医学
  • 批准号:
    10100435
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    EU-Funded
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
  • 批准号:
    MR/X023303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
  • 批准号:
    MR/X030261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
  • 批准号:
    MR/Y011635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了