Electricity Generation and Enhanced Heat Transfer via Pulsating Ferro-Nanofluid

通过脉动铁纳米流体发电和增强传热

基本信息

  • 批准号:
    1720370
  • 负责人:
  • 金额:
    $ 9.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-16 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

CBET - 1403872ThompsonNew methods for harvesting waste energy can allow for reduced fossil fuel-dependence, off-grid power generation and more efficient vehicles and buildings. Traditional thermoelectric materials can be used for these applications; however, their use is limited due to their relatively low thermal conductivities and low melting temperatures. The proposed research project centers on a new thermal-to-electrical energy harvesting/conversion method comprised of a capillary-sized heat pipe filled with magnetic fluid that operates via temperature difference. When the magnetic fluid inside the oscillating heat pipe (OHP) is exposed to a solenoid, an electrical alternating-current is generated. The high thermal conductivity and temperature stability of OHPs will allow for their utilization in conditions and applications where traditional thermoelectric materials are not viable. This new waste-heat recovery process will provide a new method for energy recovery and thermal management in a wide range of energy efficient applications.The project's research objective is to better understand "thermofluidic induction" a unique thermo-kinetic-electromagnetic energy conversion process inherent to temperature-driven flow of magnetic nanofluid near a solenoid which can result in heat transfer enhancement and electrical power generation. Well-designed experiments on various OHP platforms will be conducted to determine the influence of the design and operating parameters on the performance of these OHPs in terms of heat flux and electrical power generation. Various nanofluids will be synthesized and then characterized using a wide range of techniques, including dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM), in order to determine their physical and thermal characteristics before and after OHP-operation. The effects of thermal fatigue and nanoparticle settling will be studied. A transparent OHP will also be constructed to better understand the extent to which the nanofluid and OHP operating parameters affect energy harvesting, fluid mechanics and heat transfer. Thermo-kinetic-electromagnetic modeling will be accomplished by utilizing and modifying available multiphysics software on select OHP models. The research objectives are to determine: (1) the extent to which the magnetic field and heat transfer are coupled in thermally-driven, pulsating capillary flow of ferro-nanofluid near a solenoid, (2) how to effectively transfer heat and/or generate a magnetic field in an oscillating heat pipe by varying specific design parameters, (3) the extent to which thermally-driven, pulsating capillary flows of ferro-nanofluids can: (i) enhance heat transfer and/or (ii) affect nanoparticle suspendability (agglomeration) and particle size/distribution (i.e. thermal fatigue of nanofluids) and finally (4) a novel, multiphysics analytical/numerical model that aids in predicting heat transfer and electrical power generation inherent to thermofluidic induction.
收集废物能源的新方法可以减少对化石燃料的依赖,离网发电和更高效的车辆和建筑。传统的热电材料可用于这些应用;然而,由于其相对较低的导热性和较低的熔化温度,它们的使用受到限制。拟议的研究项目以一种新的热能到电能的收集/转换方法为中心,该方法由一个毛细管大小的热管组成,热管中充满通过温差运行的磁流体。当振荡热管(OHP)内部的磁流体与螺线管接触时,就会产生交流电。ohp的高导热性和温度稳定性将允许它们在传统热电材料不可行的条件和应用中使用。这种新的废热回收工艺将在广泛的节能应用中为能源回收和热管理提供一种新的方法。该项目的研究目标是更好地理解“热流体感应”,这是一种独特的热-动-电磁能量转换过程,固有的温度驱动磁性纳米流体在螺线管附近流动,可以导致传热增强和发电。我们将在各种热压机平台上进行精心设计的实验,以确定设计和运行参数对热流密度和发电量性能的影响。将合成各种纳米流体,然后使用各种技术进行表征,包括动态光散射(DLS),原子力显微镜(AFM)和透射电子显微镜(TEM),以确定ohp操作前后的物理和热特性。研究了热疲劳和纳米颗粒沉降的影响。为了更好地了解纳米流体和OHP运行参数对能量收集、流体力学和传热的影响程度,还将构建透明的OHP。将利用和修改现有的多物理场软件对选定的OHP模型进行热动力学-电磁建模。研究目标是确定:(1)在螺线管附近的热驱动的、脉动的铁纳米流体毛细管流动中,磁场和传热耦合的程度;(2)如何通过改变特定的设计参数,在振荡热管中有效地传递热量和/或产生磁场;(3)热驱动的、脉动的铁纳米流体毛细管流动可以在多大程度上:(i)加强传热和/或(ii)影响纳米颗粒的悬浮性(团聚)和粒度/分布(即纳米流体的热疲劳),最后(4)一种新的多物理场分析/数值模型,有助于预测热流体感应所固有的传热和发电。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keisha Walters其他文献

Keisha Walters的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keisha Walters', 18)}}的其他基金

Electricity Generation and Enhanced Heat Transfer via Pulsating Ferro-Nanofluid
通过脉动铁纳米流体发电和增强传热
  • 批准号:
    1403872
  • 财政年份:
    2014
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Atomic Force Microscopes for Cross-Disciplinary Materials Research and Education
MRI:采购原子力显微镜用于跨学科材料研究和教育
  • 批准号:
    0923474
  • 财政年份:
    2009
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
  • 批准号:
    10087446
  • 财政年份:
    2024
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Collaborative R&D
A next generation smart insect trap combining novel sensors, targeted attractants and remote AI for enhanced pest detection and alerts
下一代智能昆虫捕捉器结合了新型传感器、针对性引诱剂和远程人工智能,可增强害虫检测和警报
  • 批准号:
    10084604
  • 财政年份:
    2023
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Collaborative R&D
Achieving tip-enhanced sum-frequency generation spectroscopy and exploring the new frontiers of surface science
实现尖端增强和频发生光谱学,探索表面科学新前沿
  • 批准号:
    23H01855
  • 财政年份:
    2023
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: RAPID: Empowering Math Teachers with an AI Tool for Auto-Generation of Technology-Enhanced Assessments
合作研究:RAPID:为数学教师提供自动生成技术增强评估的人工智能工具
  • 批准号:
    2335835
  • 财政年份:
    2023
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Empowering Math Teachers with an AI Tool for Auto-Generation of Technology-Enhanced Assessments
合作研究:RAPID:为数学教师提供自动生成技术增强评估的人工智能工具
  • 批准号:
    2335834
  • 财政年份:
    2023
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Next-generation T cell therapy: SMARTER T cells for enhanced and durable anti-tumor immunity
下一代 T 细胞疗法:SMARTER T 细胞可增强且持久的抗肿瘤免疫力
  • 批准号:
    10644940
  • 财政年份:
    2023
  • 资助金额:
    $ 9.1万
  • 项目类别:
Phenomenological Studies of Light alloys for Enhanced Efficiency, Performance and Strength of Automotive Powertrain Components for Next Generation Vehicles
轻合金现象学研究,以提高下一代汽车动力总成部件的效率、性能和强度
  • 批准号:
    RGPIN-2020-06096
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Discovery Grants Program - Individual
Next generation PHOTACS: A light switchable system for enhanced spatial and temporal precision in targeted protein degradation
下一代 PHOTACS:光可切换系统,可增强目标蛋白质降解的空间和时间精度
  • 批准号:
    2753267
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Studentship
CAREER: Knowledge-enhanced and interpretable radiology report generation
职业:知识增强和可解释的放射学报告生成
  • 批准号:
    2145640
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enhanced electricity generation through liquid flow over durable slippery Surfaces
合作研究:通过液体在耐用的光滑表面上流动来增强发电
  • 批准号:
    2202688
  • 财政年份:
    2022
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了