Collaborative Research: Enhanced electricity generation through liquid flow over durable slippery Surfaces
合作研究:通过液体在耐用的光滑表面上流动来增强发电
基本信息
- 批准号:2202688
- 负责人:
- 金额:$ 26.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Efficient hydropower technologies support national prosperity and energy security by providing a renewable energy source and reducing greenhouse gas emissions. Traditional hydropower technologies convert the kinetic energy of falling water to electricity using dams and bulky electromagnetic generators. Although hydropower is a renewable energy source, traditional approaches often come with adverse environmental impacts and poor power efficiency. Notably, electricity can also be generated when liquid flows over a surface, and the resulting electricity can be harvested without using dams or electromagnetic generators. Generating hydropower via liquid flow over a surface is a versatile approach that would enable the harvesting of energy stored in various forms across the global water cycle (e.g., water flow, natural evaporation, raindrops, and ocean waves). However, such energy generation approaches do not yet yield the desired voltage output. To increase the generated electricity when liquid flows over a surface, this project will examine the impact of the liquid-surface interfacial properties on performance; favorable properties include significant interface charges, small liquid moving friction, and being durable under flow. The generated knowledge related to liquid flow over novel engineered interfaces will transform key technologies in the sustainable generation of energy, clean water, and the design of biomedical devices. The investigators will conduct educational activities that focus on the professional development and participation of women in STEM, especially K-12 and undergraduate students, to train a diverse future engineering workforce.The overarching objective of this proposal is to discover new fundamentals of electrokinetics over engineered interfaces; this knowledge will be used to design a novel, durable slippery surface for improved electricity generation. Superhydrophobic surfaces are traditionally used to enhance energy conversion in electrokinetic flow by reducing interface friction. However, there are two significant challenges associated with using superhydrophobic surfaces for this purpose: the reduced interface charges due to non-charged liquid-air interfaces and the inferior durability of liquid-air interfaces under fluid flow. To address these challenges and achieve the overarching objective, an integrated experimental and computational approach will be employed to generate the necessary knowledge. Task 1 entails the experimental characterization of the streaming potential of electrokinetic flow over oil-filled slippery rough surfaces. This effort will lead to an understanding of the effects of liquid-oil interfaces and surface roughness on enhancing interface charges. Task 2 entails experimental characterization and direct numerical simulation of the liquid-oil interface stability and durability in flow under different oil properties and geometrical parameters of the surface texture. The influences of these control parameters on surface durability will be revealed. The insights gained through Tasks 1 and 2 will then be applied to design a durable slippery surface that will increase voltage generation by two orders of magnitude over that of using a solid or superhydrophobic surface. The novel durable slippery surface will transform the development of electrokinetic energy devices for myriad applications, ranging from small-scale in situ power sources for smart electronics to scaled-up energy systems for blue energy harvesting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高效的水电技术通过提供可再生能源和减少温室气体排放来支持国家繁荣和能源安全。传统的水力发电技术利用大坝和大型电磁发电机将落水动能转化为电能。尽管水电是一种可再生能源,但传统方法往往会带来不利的环境影响和低能效。值得注意的是,当液体流过表面时也可以产生电力,由此产生的电力可以在不使用水坝或电磁发电机的情况下获得。通过水面上的液体流动来发电是一种多功能的方法,可以在全球水循环中收集以各种形式储存的能量(例如,水流、自然蒸发、雨滴和海浪)。然而,这种发电方法还没有产生所需的电压输出。为了提高液体流过表面时的发电量,本项目将研究液体-表面界面性质对性能的影响;有利的性质包括显著的界面电荷、较小的液体运动摩擦以及在流动下耐用。产生的与新型工程界面上的液体流动相关的知识将改变可持续能源生产、清洁水和生物医学设备设计的关键技术。研究人员将开展教育活动,重点关注女性在STEM中的专业发展和参与,特别是K-12和本科生,以培养多样化的未来工程工作人员。这项提议的总体目标是发现工程界面上电动力学的新基本原理;这些知识将用于设计一种新颖、耐用的光滑表面,以改进发电。超疏水表面传统上被用来通过减少界面摩擦来增强电动流动中的能量转换。然而,将超疏水表面用于这一目的有两个重大的挑战:由于不带电的液-气界面导致的界面电荷减少,以及在流体流动下液-气界面的耐久性较差。为了应对这些挑战和实现总体目标,将采用综合实验和计算方法来产生必要的知识。任务1需要对电动流动在充满油的光滑粗糙表面上的流动电势进行实验表征。这一努力将有助于理解液-油界面和表面粗糙度对增强界面电荷的影响。任务2需要对不同油品性质和表面结构几何参数下的液油界面稳定性和流动耐久性进行实验表征和直接数值模拟。揭示了这些控制参数对表面耐久性的影响。通过任务1和2获得的见解将被应用于设计耐用的光滑表面,与使用固体或超疏水表面相比,该表面将使电压产生增加两个数量级。这种新颖耐用的光滑表面将改变电动动能设备的开发,用于各种应用,从用于智能电子的小型现场电源到用于蓝色能源采集的放大能源系统。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bei Fan其他文献
Natural, tough and pH-responsive ultrasound modified soy protein isolate-arabinoxylan based double network hydrogels for controlled nutrients release
天然、坚韧且 pH 响应的超声修饰大豆分离蛋白-阿拉伯木聚糖基双网络水凝胶用于控制营养物质释放
- DOI:
10.1016/j.foodhyd.2025.111174 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:12.400
- 作者:
Ran Tao;Gaolin Li;Siyang Wang;Yufeng Sun;Yurui Li;Peiying Wang;Shuting Huang;Bei Fan;Fengzhong Wang - 通讯作者:
Fengzhong Wang
Production of nattokinase and γ-polyglutamic acid via soybean whey fermentation by emBacillus subtilis/em BSNK-5 and their emulsification to form nanoemulsions
通过枯草脂蛋白/EM BSNK-5及其乳化以形成纳米乳剂,通过大豆乳清发酵生产纳托克尼酶和γ-聚谷氨酸
- DOI:
10.1016/j.lwt.2024.117017 - 发表时间:
2024-11-15 - 期刊:
- 影响因子:6.600
- 作者:
Miao Hu;Pengfei Zhang;Weimin Meng;Jiao Wang;Bei Fan;Fengzhong Wang;Shuying Li - 通讯作者:
Shuying Li
Phenolic composition of emHemerocallis citrina/em borani and enhancement of release and antioxidant efficacy through an emulsion-based delivery system during emin vitro/em digestion
Emhemerocallis citrina/em borani的酚类组成,以及通过基于乳液的递送系统在EMIN/EM消化过程中通过基于乳液的递送系统增强释放和抗氧化功效
- DOI:
10.1016/j.lwt.2024.116160 - 发表时间:
2024-05-15 - 期刊:
- 影响因子:6.600
- 作者:
Yuwen Mu;Jing Sun;Weiye Cui;Xuexi Wang;Jianbin Yang;Bei Fan;Miao Hu;Shenghai Hu;Fengzhong Wang - 通讯作者:
Fengzhong Wang
The potential endocrine-disrupting of fluorinated pesticides and molecular mechanism of EDPs in cell models
氟代农药的潜在内分泌干扰作用及细胞模型中内分泌干扰物的分子机制
- DOI:
10.1016/j.ecoenv.2024.117615 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:6.100
- 作者:
Yalan Liu;Fengzhong Wang;Lin Li;Bei Fan;Zhiqiang Kong;Jianxin Tan;Minmin Li - 通讯作者:
Minmin Li
Analysis of oil-water interface behavior of soy protein isolate-emβ/em-Lactoglobulin blend system and rheological properties in high internal phase emulsion
- DOI:
10.1016/j.foodhyd.2025.111701 - 发表时间:
2026-02-01 - 期刊:
- 影响因子:12.400
- 作者:
Runkang Qiu;Peihua Ma;Zhaoshi Chen;Huanxiang Luo;Linggao Liu;Bei Fan;Litao Tong;Lili Wang;Liya Liu;Fengzhong Wang - 通讯作者:
Fengzhong Wang
Bei Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bei Fan', 18)}}的其他基金
MRI: Track 1 Acquisition of a Deep Reactive Ion Etching System for Enhanced Semiconductor Processing Capability
MRI:轨道 1 采购深度反应离子蚀刻系统以增强半导体加工能力
- 批准号:
2320476 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323984 - 财政年份:2024
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323983 - 财政年份:2024
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2416375 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Continuing Grant
Collaborative Research: URoL:ASC: Microbiome-mediated plant genetic resistance for enhanced agricultural sustainability
合作研究:URoL:ASC:微生物介导的植物遗传抗性以增强农业可持续性
- 批准号:
2319568 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
- 批准号:
2235160 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
- 批准号:
2334994 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Collaborative Research: A Solar-Powered Aerial Transformer for Enhanced Mobility and Endurance
合作研究:增强机动性和耐用性的太阳能空中变压器
- 批准号:
2334995 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
- 批准号:
2310137 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
- 批准号:
2246916 - 财政年份:2023
- 资助金额:
$ 26.33万 - 项目类别:
Standard Grant