SCH: INT: Collaborative Research: Dyadic Behavior Informatics for Psychotherapy Process and Outcome
SCH:INT:合作研究:心理治疗过程和结果的二元行为信息学
基本信息
- 批准号:1721667
- 负责人:
- 金额:$ 56.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using multimodal indicators, this project will develop a novel computational framework that models individual and interpersonal behavior in relation to process and outcomes in psychotherapy and other interpersonal contexts. The unique aspect of the project is the explicit joint and dyadic modeling of individuals' multimodal behaviors to holistically understand the system of the dyad. This research will pave the way to a better understanding of the dyadic behavior dynamics in psychotherapy and beyond. The project will build the computational foundations to predict process and outcomes, and more broadly inform behavioral science: The project will (1) contribute to knowledge about the psychotherapeutic process by identifying and characterizing behavior indicators with respect to process and outcome measures; (2) deepen our understanding of dyadic coordination dynamics that contribute to strong working alliance between clients and therapists; (3) make available to the research and clinical communities the Dyadic Behavior Informatics framework and Behavior Indicator Knowledgebase for use in other settings; and (4) establish the foundation for novel education and training materials and interventions. The knowledge and computational tools developed as part of this project will impact computing and behavioral science and applied domains more broadly. This project will advance understanding of dyadic behavioral dynamics by developing computational representations that can model fine-grained dyadic coordination between individuals and new algorithms that can model multi-level dynamics. Central to this research effort is the creation of the Behavior Indicator Knowledgebase (BIK) that will summarize discovered knowledge about significant and validated dyadic behavior indicators. While this work could have profound impact on behavioral and social science as a whole, the project specifically focuses on understanding the dynamics that predict process and outcome variables in psychotherapy. The project identifies five fundamental research challenges and presents a plan to address them directly: (1) Acquire a large, dyadic, and multimodal dataset of 64 patients with distress disorders seen over 8 psychotherapy sessions; (2) Create multimodal behavior indicators which can model the within session dynamics of the client or therapist; (3) Develop new dyadic behavior indicators that explicitly model the client-therapist coordination, (4) Develop abstract dyadic behavior representations that can learn the fine-grained dynamics between client and therapist behaviors; and, (5) Validate the computational representations (embeddings) and prediction models by assessing their impact on the predictive power of process and outcome measures in psychotherapy and assess generalizability beyond psychotherapy.
利用多模态指标,该项目将开发一种新的计算框架,对心理治疗和其他人际环境中与过程和结果相关的个人和人际行为进行建模。该项目的独特之处在于对个体的多模态行为进行明确的联合和二元建模,以全面了解二元系统。这项研究将为更好地理解心理治疗及其他领域的二元行为动力学铺平道路。该项目将建立预测过程和结果的计算基础,并更广泛地为行为科学提供信息:该项目将(1)通过识别和描述与过程和结果测量相关的行为指标,有助于了解心理治疗过程;(2)加深我们对有助于来访者和治疗师之间建立强大工作联盟的二元协调动力学的理解;(3)向研究和临床界提供二元行为信息学框架和行为指标知识库,以供其他环境使用;(4)为新型教育培训材料和干预措施奠定基础。作为该项目一部分的知识和计算工具将更广泛地影响计算和行为科学以及应用领域。该项目将通过开发计算表示来促进对二元行为动力学的理解,该计算表示可以模拟个体之间的细粒度二元协调,以及可以模拟多层次动力学的新算法。本研究工作的核心是创建行为指标知识库(BIK),该知识库将总结有关重要和已验证的二元行为指标的发现知识。虽然这项工作可能对整个行为和社会科学产生深远的影响,但该项目特别侧重于了解心理治疗中预测过程和结果变量的动态。该项目确定了五个基础研究挑战,并提出了一个直接解决这些挑战的计划:(1)获取一个大型的、双元的、多模态的数据集,其中包括64名经历过8次心理治疗的痛苦障碍患者;(2)创建多模态行为指标,可以模拟来访者或治疗师的会话动态;(3)开发新的二元行为指标,明确地模拟来访者和治疗师之间的协调;(4)开发抽象的二元行为表征,可以学习来访者和治疗师行为之间的细粒度动态;(5)通过评估其对心理治疗过程和结果测量的预测能力的影响,验证计算表征(嵌入)和预测模型,并评估其在心理治疗之外的推广能力。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated Measurement of Head Movement Synchrony during Dyadic Depression Severity Interviews.
在二元抑郁严重程度访谈期间自动测量头部运动同步性。
- DOI:10.1109/fg.2019.8756509
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bhatia,Shalini;Goecke,Roland;Hammal,Zakia;Cohn,JeffreyF
- 通讯作者:Cohn,JeffreyF
FACS3D-Net: 3D Convolution based Spatiotemporal Representation for Action Unit Detection
- DOI:10.1109/acii.2019.8925514
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Le Yang;Itir Onal Ertugrul;J. Cohn;Z. Hammal;D. Jiang;H. Sahli
- 通讯作者:Le Yang;Itir Onal Ertugrul;J. Cohn;Z. Hammal;D. Jiang;H. Sahli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Cohn其他文献
Identification of candidate neural biomarkers of obsessive-compulsive symptom intensity and response to deep brain stimulation
- DOI:
10.1016/j.brs.2023.01.180 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Nicole Provenza;Chandra Swamy;Luciano Branco;Evan Dastin-van Rijn;Saurabh Hinduja;Michaela Alarie;Ayan Waite;Michelle Avendano-Ortega;Sarah McKay;Greg Vogt;Huy Dang;Raissa Mathura;Bradford Roarr;Jeff Herron;Eric Storch;Jeffrey Cohn;David Borton;Nuri Ince;Wayne Goodman;Sameer Sheth - 通讯作者:
Sameer Sheth
Subspace methods for electronic structure simulations on quantum computers
量子计算机电子结构模拟的子空间方法
- DOI:
10.1088/2516-1075/ad3592 - 发表时间:
2023 - 期刊:
- 影响因子:2.6
- 作者:
Mario Motta;William Kirby;I. Liepuoniute;Kevin J. Sung;Jeffrey Cohn;Antonio Mezzacapo;Katherine Klymko;Nam Nguyen;Nobuyuki Yoshioka;Julia E. Rice - 通讯作者:
Julia E. Rice
Efficacy of the Omega-3 Index in predicting NAFLD in overweight and obese adults: A pilot study
- DOI:
10.1016/j.orcp.2014.10.138 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:
- 作者:
Helen Parker;Helen O’Connor;Shelley Keating;Jeffrey Cohn;Manohar Garg;Ian Caterson;Jacob George;Nathan Johnson - 通讯作者:
Nathan Johnson
Chronic Ecological Assessment of Intracranial Neural Activity Synchronized to Disease-Relevant Behaviors in Obsessive-Compulsive Disorder
- DOI:
10.1016/j.biopsych.2023.02.041 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Nicole Provenza;Evan Dastin-van Rijn;Chandra Prakash Swamy;Huy Dang;Sameer Rajesh;Nabeel Diab;Laszlo Jeni;Saurabh Hinduja;Michelle Avendano-Ortega;Sarah A. Mckay;Gregory S. Vogt;Bradford Roarr;Andrew Wiese;Ben Shofty;Jeffrey Herron;Kelly Bijanki;Eric Storch;Jeffrey Cohn;Nuri Ince;David Borton - 通讯作者:
David Borton
Identification of Candidate Neural Biomarkers of Obsessive-Compulsive Symptom Intensity and Response to Deep Brain Stimulation
- DOI:
10.1016/j.biopsych.2023.02.174 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Nicole Provenza;Evan Dastin-van Rijn;Chandra Prakash Swamy;Luciano Branco;Saurabh Hinduja;Michelle Avendano-Ortega;Sarah A. Mckay;Gregory S. Vogt;Huy Dang;Bradford Roarr;Andrew Wiese;Ben Shofty;Jeffrey Herron;Matthew Harrison;Kelly Bijanki;Eric Storch;Jeffrey Cohn;Nuri Ince;David Borton;Wayne Goodman - 通讯作者:
Wayne Goodman
Jeffrey Cohn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Cohn', 18)}}的其他基金
CI-SUSTAIN: Collaborative Research: Extending a Large Multimodal Corpus of Spontaneous Behavior for Automated Emotion Analysis
CI-SUSTAIN:协作研究:扩展自发行为的大型多模态语料库以进行自动情绪分析
- 批准号:
1629716 - 财政年份:2016
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
WORKSHOP: Doctoral Consortium at the ACM International Conference on Multimodal Interaction 2014
研讨会:2014 年 ACM 国际多模式交互会议上的博士联盟
- 批准号:
1443097 - 财政年份:2014
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Learning and Sensory-based Modeling for Adaptive Web-Empowerment Trauma Treatment
SCH:INT:协作研究:自适应网络赋权创伤治疗的学习和基于感觉的建模
- 批准号:
1418026 - 财政年份:2014
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
CI-ADDO-EN: Collaborative Research: 3D Dynamic Multimodal Spontaneous Emotion Corpus for Automated Facial Behavior and Emotion Analysis
CI-ADDO-EN:协作研究:用于自动面部行为和情绪分析的 3D 动态多模态自发情绪语料库
- 批准号:
1205195 - 财政年份:2012
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
Collaborative Research: Communication, Perturbation, and Early Development
合作研究:沟通、扰动和早期发展
- 批准号:
1052603 - 财政年份:2011
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
EAGER: Spontaneous 4D-Facial Expression Corpus for Automated Facial Image Analysis
EAGER:用于自动面部图像分析的自发 4D 面部表情语料库
- 批准号:
1051169 - 财政年份:2010
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
Collaborative Research DHB: Coordinated motion and facial expression in dyadic conversation
DHB 合作研究:二元对话中的协调运动和面部表情
- 批准号:
0527397 - 财政年份:2006
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
Collaborative Proposal: Automated Measurements of Infant Facial Expressions and Human Ratings of Their Emotional Intensity
合作提案:婴儿面部表情的自动测量和情绪强度的人类评级
- 批准号:
0418001 - 财政年份:2004
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
Mother-Infant Coordination of Vocalization and Affect
母婴发声和情感的协调
- 批准号:
8919711 - 财政年份:1990
- 资助金额:
$ 56.8万 - 项目类别:
Continuing Grant
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 56.8万 - 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10392429 - 财政年份:2021
- 资助金额:
$ 56.8万 - 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014554 - 财政年份:2020
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014552 - 财政年份:2020
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2019389 - 财政年份:2020
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013651 - 财政年份:2020
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013122 - 财政年份:2020
- 资助金额:
$ 56.8万 - 项目类别:
Standard Grant