Testing the Feasibility of Batteryless Physiological Monitoring

测试无电池生理监测的可行性

基本信息

  • 批准号:
    1723366
  • 负责人:
  • 金额:
    $ 29.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-15 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

This award studies the ways to monitor the most common physiological variables (heart rate, blood pressure, respiration and brain activity) with miniature devices that can harvest energy from the body instead of being powered by batteries, and using electrodes that can be applied to the skin as a "tattoo". This next generation of Mobile Health (mHealth) devices will improve further the national health and wellbeing. A major bottleneck towards the goal is how to decrease the power consumption of algorithms required to extract information from the collected signals. The aim of this project is to design, implement and validate a new ultra-low power signal processing solution that does not require digital computers, but much simpler digital devices driven by input pulse trains. The project will also train two graduate students in the theory and technology to design the next generation of biomedical devices. The award will develop new pulse based algorithms and a reconfigurable hardware platform that amplifies, converts and quantifies structure of the signals in real time. More specifically, the research plan includes two synergestic aims: the first aim develops a mathematical framework based on signal processing and a statistical-syntactic approach to learn directly from data the structure of the input. A nonlinear state model called KAARMA (kernel adaptive autoregressive moving average model) will be trained statistically from data to recognize events with clinical significance. Once trained, KAARMA can be converted in a combination of finite state machines and memory tables that can easily be implemented in ultra-low power reconfigurable digital logic platform to design ambulatory monitoring of physiological variables for mHealth. No digital signal processors are needed in the deployed proposed device, lowering power consumption, maintaining programmability and the quality of the digital extraction of information. The second aim is to design an ultra-low power reconfigurable analog front-end sensing integrated circuit using mainly digital standard cells to implement a variable number of channels, multipurpose analog amplification and filtering, and the finite state machines. The expected goal is to demonstrate power consumption of less than 5 microwatts to analyze one channel of electrocardiogram (ECG). The KAARMA will be extended to blood pressure, respiration and brain activity. Validation with competing technologies will be conducted in the Physionet database.
该奖项研究如何使用微型设备监测最常见的生理变量(心率、血压、呼吸和大脑活动),这些微型设备可以从身体获取能量,而不是由电池供电,并使用可以应用于皮肤的电极作为“纹身”。下一代移动健康(MHealth)设备将进一步改善国民健康和福祉。实现这一目标的一个主要瓶颈是如何降低从收集的信号中提取信息所需的算法的功耗。该项目的目的是设计、实施和验证一种新的超低功耗信号处理解决方案,该解决方案不需要数字计算机,而是需要由输入脉冲序列驱动的简单得多的数字设备。该项目还将培训两名研究生在理论和技术方面设计下一代生物医学设备。该奖项将开发基于PULSE的新算法和可重新配置的硬件平台,以实时放大、转换和量化信号结构。更具体地说,该研究计划包括两个协同目标:第一个目标是开发一个基于信号处理的数学框架和一种统计句法方法,以便直接从数据中学习输入的结构。一种称为Kaarma(核自适应自回归滑动平均模型)的非线性状态模型将从数据中进行统计训练,以识别具有临床意义的事件。一旦经过训练,Kaarma就可以转换为有限状态机和内存表的组合,这些组合可以很容易地在超低功耗可重构数字逻辑平台上实现,以设计对mHealth的生理变量的动态监测。部署的拟议设备不需要数字信号处理器,从而降低了功耗,保持了可编程性和信息数字提取的质量。第二个目标是设计一种超低功耗可重构模拟前端传感集成电路,主要使用数字标准单元来实现可变通道数、多用途模拟放大和滤波以及有限状态机。预计的目标是演示功耗低于5微瓦,以分析一个通道的心电(ECG)。卡玛将扩展到血压、呼吸和大脑活动。将在Physionet数据库中进行竞争技术的验证。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Theory and Algorithms for Pulse Signal Processing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Principe其他文献

fMRI analysis: Distribution divergence measure based on quadratic entropy
  • DOI:
    10.1016/s1053-8119(00)91452-6
  • 发表时间:
    2000-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qun Zhao;Jose Principe;Margaret Bradley;Peter Lang
  • 通讯作者:
    Peter Lang

Jose Principe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Principe', 18)}}的其他基金

RAPID: Inexpensive, rapidly manufacturable respiratory monitor to provide safe emergency ventilation during the COVID-19 pandemic
RAPID:廉价、可快速制造的呼吸监测仪,可在 COVID-19 大流行期间提供安全的紧急通气
  • 批准号:
    2028709
  • 财政年份:
    2020
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: A Computational Neuroscience Framework for Olfactory Scene Analysis within Complex Fluid Environments
合作研究:NCS-FO:复杂流体环境中嗅觉场景分析的计算神经科学框架
  • 批准号:
    1631759
  • 财政年份:
    2016
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
RI: Medium: Quantifying Causality in Distributed Spatial Temporal Brain Networks
RI:中:量化分布式时空脑网络中的因果关系
  • 批准号:
    0964197
  • 财政年份:
    2010
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Nonlinear Kalman Filters in RKHS
RKHS 中的非线性卡尔曼滤波器
  • 批准号:
    0856441
  • 财政年份:
    2009
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Optimal Modeling in Curved Reproducing Kernel Hilbert Spaces
曲线再生核希尔伯特空间中的最优建模
  • 批准号:
    0601271
  • 财政年份:
    2006
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Design, Analysis and Validation of Biologically Plausible Computational Models.
生物学上合理的计算模型的设计、分析和验证。
  • 批准号:
    0422718
  • 财政年份:
    2004
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
A Theory of Learning Based on Pairwise Interactions
基于成对互动的学习理论
  • 批准号:
    0300340
  • 财政年份:
    2003
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Continuing Grant
Information Theoretic Learning for Pattern Recognition and Signal Processing
模式识别和信号处理的信息论学习
  • 批准号:
    9900394
  • 财政年份:
    1999
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
A Net-Centric Undergraduate Course in Adaptive Systems
以网络为中心的自适应系统本科课程
  • 批准号:
    9872526
  • 财政年份:
    1998
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant
Learning Environment for Neurocomputing
神经计算学习环境
  • 批准号:
    9751290
  • 财政年份:
    1997
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Standard Grant

相似海外基金

Techno-economic Feasibility Study of ClimaHtech innovative clean maritime solutions
ClimaHtech 创新清洁海事解决方案的技术经济可行性研究
  • 批准号:
    10098100
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Collaborative R&D
Tackling Youth Loneliness in Urban Areas: Measuring feasibility, acceptability and benefits of a social interaction intervention
解决城市地区青少年的孤独感:衡量社交互动干预的可行性、可接受性和益处
  • 批准号:
    ES/Z502522/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Research Grant
Investigate the feasibility of altering cancer drug sensitivity through modulation of AHR activity
研究通过调节 AHR 活性改变癌症药物敏感性的可行性
  • 批准号:
    24K10327
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Syphilis point-of-care testing in prenatal care for marginalized urban populations: A feasibility implementation study
边缘化城市人口产前护理中的梅毒现场检测:可行性实施研究
  • 批准号:
    502557
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
Memory Reshaping for Depression: A Remote Digital Randomised Controlled Feasibility Trial
抑郁症记忆重塑:远程数字随机控制可行性试验
  • 批准号:
    MR/Y008545/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Research Grant
A self-guided and monitored innovative AI-driven parental support intervention (mobile app), for families caring for a young one that self-harms: feasibility study
一种自我指导和监控的创新型人工智能驱动的家长支持干预措施(移动应用程序),适用于照顾自残儿童的家庭:可行性研究
  • 批准号:
    10101171
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Collaborative R&D
Repurposing Sodium Cromoglycate For Lymphangioleiomyomatosis (LAM): An Open Label, Proof Of Concept And Feasibility Study
重新利用色甘酸钠治疗淋巴管平滑肌瘤病 (LAM):开放标签、概念验证和可行性研究
  • 批准号:
    MR/Y008618/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Research Grant
Adaptation and Feasibility assessment of a primary suicide prevention intervention for school adolescents in Nigeria
尼日利亚学校青少年初级自杀预防干预措施的适应性和可行性评估
  • 批准号:
    MR/Y01958X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Research Grant
Technical feasibility study for the detection of target biomarkers in menstrual blood for the diagnosis of polycystic ovary syndrome.
检测经血中目标生物标志物诊断多囊卵巢综合征的技术可行性研究。
  • 批准号:
    10100544
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Collaborative R&D
Researching the feasibility of enhancing the productivity of daffodil harvesting through the use of a daffodil collection robotic platform (Daffy)
研究利用水仙花采集机器人平台(Daffy)提高水仙花采收生产力的可行性
  • 批准号:
    10107691
  • 财政年份:
    2024
  • 资助金额:
    $ 29.8万
  • 项目类别:
    Launchpad
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了