Information Theoretic Learning for Pattern Recognition and Signal Processing

模式识别和信号处理的信息论学习

基本信息

  • 批准号:
    9900394
  • 负责人:
  • 金额:
    $ 21.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-05-01 至 2003-04-30
  • 项目状态:
    已结题

项目摘要

9900394PrincipeThe focus of this research is the development and evaluation of a new class of algorithms for informationtheoretic learning (ITL). Conventional learning designs are usually based on an effort to minimize either square error or a measure of entropy which can be computationally difficult to handle. This project will attempt to estimate and use a new measure of entropy, based on concepts from Renyi. The appeal of the algorithm is that it can be easily integrated with a Parzen window estimator yielding several practical criteria to adapt universal mappers, either under unsupervised or supervised paradigms.If the research is successful a novel and quite general class of algorithms will be made available tothe scientific community interested in studying and applying learning systems. The natural goal of this research is to further develop the ITL algorithms, an study their application to a variety of important problems in learning. Specifically, the project will study the properties of the estimator for both entropy and mutual information, ways to decrease the computational complexity of the algorithm, extend it to time signals, set its parameter and access its scalability. It will also investigate new distance measures for mutual information optimization and the feasibility of imple-menting an "entropy chip" in analog VLSI which will use the laws of physics to do the computation.The research team/will be investigating issues in information filtering, independent component analysis and blind source separation using the newly developed ITL class of algorithms. These areas are important in their own right, and have a momentum that will be further advanced in this research. But the team will also use the common computational infra-structure of estimating entropy and mutual information from examples to compare the proposed ITL algorithms' performance with the best available techniques in each field. Specifically, (1) They will extend the present state-of-the-art in the blind source separation of convolutive mixtures. They will apply the newlearning algorithm to the co-channel interference in mobile communication channels, and noise reduction in hearing aids. (2) They will apply ITL to system identification and dynamic modeling and com-pare it to our previous results using the mean square error. (3) The problem of sparse representa-tions is crucial to understand the brain and design intelligent artificial systems. We will be researching how to learn sparse representation from data, using both overcomplete bases and the ITL algorithm to implement independent component analysis. ***
9900394原则这项研究的重点是信息理论学习(ITL)的一类新的算法的开发和评估。传统的学习设计通常基于最小化平方误差或熵的测量的努力,这在计算上可能难以处理。 这个项目将尝试估计和使用一种新的熵的测量方法,基于Renyi的概念。 该算法的吸引力在于,它可以很容易地与Parzen窗口估计器集成,从而产生几个实用的标准来适应通用映射器,无论是在无监督的还是有监督的范式下,如果研究成功,一种新颖的和相当通用的算法将被提供给对学习系统研究和应用感兴趣的科学界。本研究的自然目标是进一步发展ITL算法,研究其在学习中的各种重要问题的应用。具体而言,该项目将研究熵和互信息估计器的性质,降低算法计算复杂度的方法,将其扩展到时间信号,设置其参数并访问其可扩展性。 研究小组亦会研究新的互信息最佳化的距离量度,以及在模拟超大规模集成电路中应用物理定律进行计算的“熵芯片”的可行性。研究小组会研究使用新发展的ITL类算法进行信息过滤、独立成分分析及盲源分离等问题。这些领域本身就很重要,并将在本研究中进一步推进。但该小组还将使用从实例中估计熵和互信息的通用计算基础结构,将拟议的国际交易日志算法的性能与每个领域的最佳现有技术进行比较。 具体而言,(1)它们将扩展卷积混合盲源分离的现有技术。 他们将把新的学习算法应用于移动的通信信道中的同信道干扰和助听器中的降噪。(2)他们将ITL应用于系统辨识和动态建模,并使用均方误差将其与我们以前的结果进行比较。(3)稀疏表示问题是理解大脑和设计智能人工系统的关键。我们将研究如何从数据中学习稀疏表示,使用过完备基和ITL算法来实现独立分量分析。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jose Principe其他文献

fMRI analysis: Distribution divergence measure based on quadratic entropy
  • DOI:
    10.1016/s1053-8119(00)91452-6
  • 发表时间:
    2000-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Qun Zhao;Jose Principe;Margaret Bradley;Peter Lang
  • 通讯作者:
    Peter Lang

Jose Principe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jose Principe', 18)}}的其他基金

RAPID: Inexpensive, rapidly manufacturable respiratory monitor to provide safe emergency ventilation during the COVID-19 pandemic
RAPID:廉价、可快速制造的呼吸监测仪,可在 COVID-19 大流行期间提供安全的紧急通气
  • 批准号:
    2028709
  • 财政年份:
    2020
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Testing the Feasibility of Batteryless Physiological Monitoring
测试无电池生理监测的可行性
  • 批准号:
    1723366
  • 财政年份:
    2017
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FO: A Computational Neuroscience Framework for Olfactory Scene Analysis within Complex Fluid Environments
合作研究:NCS-FO:复杂流体环境中嗅觉场景分析的计算神经科学框架
  • 批准号:
    1631759
  • 财政年份:
    2016
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
RI: Medium: Quantifying Causality in Distributed Spatial Temporal Brain Networks
RI:中:量化分布式时空脑网络中的因果关系
  • 批准号:
    0964197
  • 财政年份:
    2010
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Nonlinear Kalman Filters in RKHS
RKHS 中的非线性卡尔曼滤波器
  • 批准号:
    0856441
  • 财政年份:
    2009
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Optimal Modeling in Curved Reproducing Kernel Hilbert Spaces
曲线再生核希尔伯特空间中的最优建模
  • 批准号:
    0601271
  • 财政年份:
    2006
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Design, Analysis and Validation of Biologically Plausible Computational Models.
生物学上合理的计算模型的设计、分析和验证。
  • 批准号:
    0422718
  • 财政年份:
    2004
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
A Theory of Learning Based on Pairwise Interactions
基于成对互动的学习理论
  • 批准号:
    0300340
  • 财政年份:
    2003
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Continuing Grant
A Net-Centric Undergraduate Course in Adaptive Systems
以网络为中心的自适应系统本科课程
  • 批准号:
    9872526
  • 财政年份:
    1998
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Learning Environment for Neurocomputing
神经计算学习环境
  • 批准号:
    9751290
  • 财政年份:
    1997
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Continuing Grant
CRII: CIF: Information Theoretic Measures for Fairness-aware Supervised Learning
CRII:CIF:公平意识监督学习的信息论措施
  • 批准号:
    2246058
  • 财政年份:
    2023
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
CIF: Small: Information-theoretic privacy and security for personalized distributed learning
CIF:小型:个性化分布式学习的信息论隐私和安全
  • 批准号:
    2139304
  • 财政年份:
    2022
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Information-theoretic analysis and synthesis in deep learning
深度学习中的信息论分析与综合
  • 批准号:
    RGPIN-2020-06285
  • 财政年份:
    2022
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Mathematical Foundation of Learning with Information-Theoretic Criteria from Non-Gaussian Data
协作研究:利用非高斯数据的信息理论标准学习的数学基础
  • 批准号:
    2110826
  • 财政年份:
    2021
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Information-theoretic analysis and synthesis in deep learning
深度学习中的信息论分析与综合
  • 批准号:
    RGPIN-2020-06285
  • 财政年份:
    2021
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Mathematical Foundation of Learning with Information-Theoretic Criteria from Non-Gaussian Data
协作研究:利用非高斯数据的信息理论标准学习的数学基础
  • 批准号:
    2111080
  • 财政年份:
    2021
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Continuing Grant
Information theoretic learning for sound analysis
用于声音分析的信息论学习
  • 批准号:
    2594237
  • 财政年份:
    2021
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Studentship
Information-theoretic analysis and synthesis in deep learning
深度学习中的信息论分析与综合
  • 批准号:
    RGPIN-2020-06285
  • 财政年份:
    2020
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Discovery Grants Program - Individual
CIF: Medium: Collaborative Research: Information-theoretic Guarantees on Privacy in the Age of Learning
CIF:媒介:协作研究:学习时代隐私的信息理论保证
  • 批准号:
    1901243
  • 财政年份:
    2019
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了