Engineering exotic phases of matter in solid state systems

固态系统中物质的奇异相工程

基本信息

  • 批准号:
    1723367
  • 负责人:
  • 金额:
    $ 35.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research and education in exploring and realizing exotic quantum phenomena in engineered solid-state devices. Synthesizing controllable phases of matter in the laboratory is essential for advancing both fundamental science and quantum technologies. As a prominent recent example, certain phases have been predicted to support exotic particles that are expected to display uniquely quantum behaviors; this new physics can, in turn, be exploited to create quantum computers that wildly outperform modern machines for certain tasks. One powerful route forward towards realization in the laboratory combines well-understood systems to force electrons into novel states of matter that might otherwise be difficult to realize. The PI's research will pursue this line of attack to explore a variety of engineered systems, with applications ranging from quantum computing to tabletop simulations of black-hole physics and quantum chaos. The results will help in bridging novel theories with tangible experiments, while also streamlining the realization of new technologies. The research will be complemented by a multifaceted education and outreach program. Training of undergraduates and graduate students in modern theoretical research topics will comprise a major component. Research advances will be broadly disseminated, to specialists and non-specialists alike, through research articles, seminars, commentaries, blog posts, special summer schools, and courses. In order to promote interest in science at an early age, the PI's group will also host elementary-, middle-, and high-school students visiting Caltech from nearby schools, which serve many economically disadvantaged and underrepresented students. TECHNICAL SUMMARYThis award supports theoretical research and education in exploring and realizing exotic quantum phenomena in engineered solid-state devices. The project will specifically investigate the following areas: i) Nanowire-based realizations of interacting Majorana-fermion models that exhibit profound connections to black holes, chaos, and holography. Viewing the problem from this hardware perspective has the potential to reveal new insights that further link high energy, quantum information, and condensed matter physics. ii) Plausible avenues toward new non-Abelian phases in topological-insulator surfaces and quantum-Hall systems. This research will begin to bridge the gulf between theory and experiment in these areas while also deepening connections between topological insulators and quantum-Hall systems that have recently come to light. iii) Practical issues for existing and upcoming experiments pursuing topological quantum computing. Research here includes simulating experimental protocols that probe fusion of non-Abelian anyons, and developing transport theories that will guide experiments towards realizing Majorana zero modes, parafermionic generalizations, and graphene-based topological insulators. These activities will support ongoing efforts at stabilizing non-Abelian anyons in engineered architectures and will help quantify their utility for quantum-information applications. The research will be complemented by a multifaceted education and outreach program. Training of undergraduates and graduate students in modern theoretical research topics will comprise a major component. Research advances will be broadly disseminated, to specialists and non-specialists alike, through research articles, seminars, commentaries, blog posts, special summer schools, and courses. In order to promote interest in science at an early age, the PI's group will also host elementary-, middle-, and high-school students visiting Caltech from nearby schools, which serve many economically disadvantaged and underrepresented students.
该奖项支持在工程固态器件中探索和实现奇异量子现象的理论研究和教育。在实验室中合成物质的可控相对于推进基础科学和量子技术至关重要。作为最近一个突出的例子,某些相被预测支持奇异粒子,这些奇异粒子有望表现出独特的量子行为;这种新的物理学反过来又可以用来制造量子计算机,在某些任务上远远超过现代机器。在实验室中实现这一目标的一条强有力的途径是将人们熟知的系统结合起来,迫使电子进入物质的新状态,否则这些状态可能很难实现。PI的研究将沿着这条路线探索各种工程系统,应用范围从量子计算到黑洞物理和量子混沌的桌面模拟。这些结果将有助于将新颖的理论与实际的实验联系起来,同时也简化了新技术的实现。这项研究将辅以多方面的教育和外展计划。对本科生和研究生进行现代理论研究课题的培训将是一个重要组成部分。研究进展将通过研究文章、研讨会、评论、博客文章、特殊暑期学校和课程广泛传播给专家和非专家。为了提高学生对科学的兴趣,PI小组还将邀请来自附近学校的小学、初中和高中学生参观加州理工学院,这些学校为许多经济上处于不利地位和代表性不足的学生提供服务。该奖项支持在工程固态器件中探索和实现奇异量子现象的理论研究和教育。该项目将具体研究以下领域:i)基于纳米线的马约拉纳-费米子相互作用模型的实现,该模型与黑洞、混沌和全息术有着深刻的联系。从硬件的角度来看这个问题有可能揭示出进一步将高能、量子信息和凝聚态物理联系起来的新见解。ii)拓扑绝缘体表面和量子霍尔系统中新的非阿贝尔相的可行途径。这项研究将开始在这些领域的理论和实验之间架起桥梁,同时也加深了拓扑绝缘体和最近发现的量子霍尔系统之间的联系。iii)现有和即将进行的拓扑量子计算实验的实际问题。这里的研究包括模拟实验协议,探索非阿贝尔任意子的融合,发展输运理论,指导实验实现马约拉纳零模式、准介子推广和石墨烯基拓扑绝缘体。这些活动将支持在工程架构中稳定非阿贝尔任意子的持续努力,并将有助于量化它们在量子信息应用中的效用。这项研究将辅以多方面的教育和外展计划。对本科生和研究生进行现代理论研究课题的培训将是一个重要组成部分。研究进展将通过研究文章、研讨会、评论、博客文章、特殊暑期学校和课程广泛传播给专家和非专家。为了提高学生对科学的兴趣,PI小组还将邀请来自附近学校的小学、初中和高中学生参观加州理工学院,这些学校为许多经济上处于不利地位和代表性不足的学生提供服务。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetry and duality in bosonization of two-dimensional Dirac fermions
  • DOI:
    10.1103/physrevx.7.041016
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David F. Mross;J. Alicea;O. Motrunich
  • 通讯作者:
    David F. Mross;J. Alicea;O. Motrunich
Dephasing and leakage dynamics of noisy Majorana-based qubits: Topological versus Andreev
  • DOI:
    10.1103/physrevb.101.075404
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    R. Mishmash;B. Bauer;F. Oppen;J. Alicea
  • 通讯作者:
    R. Mishmash;B. Bauer;F. Oppen;J. Alicea
Correlation-driven topological phases in magic-angle twisted bilayer graphene
  • DOI:
    10.1038/s41586-020-03159-7
  • 发表时间:
    2021-01-18
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Choi, Youngjoon;Kim, Hyunjin;Nadj-Perge, Stevan
  • 通讯作者:
    Nadj-Perge, Stevan
Approximating the Sachdev-Ye-Kitaev model with Majorana wires
  • DOI:
    10.1103/physrevb.96.121119
  • 发表时间:
    2017-09-29
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chew, Aaron;Essin, Andrew;Alicea, Jason
  • 通讯作者:
    Alicea, Jason
Fermionized parafermions and symmetry-enriched Majorana modes
  • DOI:
    10.1103/physrevb.98.085143
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Aaron Chew;David F. Mross;J. Alicea
  • 通讯作者:
    Aaron Chew;David F. Mross;J. Alicea
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Alicea其他文献

Majorana modes materialize
马约拉纳模式实现了。
  • DOI:
    10.1038/nnano.2013.178
  • 发表时间:
    2013-09-04
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Jason Alicea
  • 通讯作者:
    Jason Alicea
Superconductivity and spin canting in spin–orbit-coupled trilayer graphene
自旋轨道耦合三层石墨烯中的超导性和自旋倾斜
  • DOI:
    10.1038/s41586-025-08863-w
  • 发表时间:
    2025-05-07
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Caitlin L. Patterson;Owen I. Sheekey;Trevor B. Arp;Ludwig F. W. Holleis;Jin Ming Koh;Youngjoon Choi;Tian Xie;Siyuan Xu;Yi Guo;Hari Stoyanov;Evgeny Redekop;Canxun Zhang;Grigory Babikyan;David Gong;Haoxin Zhou;Xiang Cheng;Takashi Taniguchi;Kenji Watanabe;Martin E. Huber;Chenhao Jin;Étienne Lantagne-Hurtubise;Jason Alicea;Andrea F. Young
  • 通讯作者:
    Andrea F. Young
Exponential boost for quantum information
量子信息呈指数级增长
  • DOI:
    10.1038/531177a
  • 发表时间:
    2016-03-09
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Jason Alicea
  • 通讯作者:
    Jason Alicea

Jason Alicea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Alicea', 18)}}的其他基金

CAREER: Engineering topological phases of matter in solid state systems
职业:工程固态系统中物质的拓扑相
  • 批准号:
    1341822
  • 财政年份:
    2012
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant
CAREER: Engineering topological phases of matter in solid state systems
职业:工程固态系统中物质的拓扑相
  • 批准号:
    1055522
  • 财政年份:
    2011
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant

相似海外基金

The mathematics of exotic phases: fractons
奇异相的数学:分形
  • 批准号:
    2881673
  • 财政年份:
    2023
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Studentship
Fermiology and exotic quantum phases of ultra-quantum-materials
超量子材料的费米学和奇异量子相
  • 批准号:
    2742831
  • 财政年份:
    2022
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Studentship
Mathematical Modelling of Exotic Liquid Crystalline Phases
奇异液晶相的数学模型
  • 批准号:
    2739112
  • 财政年份:
    2022
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Studentship
Interacting dynamics and exotic phases of quantum lattice systems
量子晶格系统的相互作用动力学和奇异相
  • 批准号:
    RGPIN-2018-03733
  • 财政年份:
    2022
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Discovery Grants Program - Individual
RUI New Generation of AI-Augmented Quantum Monte Carlo Libraries to Guide the Search for Exotic Superfluid Phases in Cold Atoms
RUI 新一代人工智能增强量子蒙特卡罗库指导冷原子中奇异超流体相的搜索
  • 批准号:
    2207048
  • 财政年份:
    2022
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
Exotic Quantum Liquid Phases Due to Intrinsic Degrees of Anisotropy
由于固有的各向异性程度而产生的奇异量子液相
  • 批准号:
    2001980
  • 财政年份:
    2021
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
New Approaches to Modeling and Searching for Physics Beyond the Standard Model: Boosted Dark Matter, Macroscopic Dark Matter, Dark Sectors, and Exotic Phases
超越标准模型的物理建模和搜索新方法:增强暗物质、宏观暗物质、暗区和奇异相
  • 批准号:
    2112789
  • 财政年份:
    2021
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Continuing Grant
Probing Exotic Phases of Ultra High Mobility Two-Dimensional Electrons
探测超高迁移率二维电子的奇异相
  • 批准号:
    2104771
  • 财政年份:
    2021
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Standard Grant
Interacting dynamics and exotic phases of quantum lattice systems
量子晶格系统的相互作用动力学和奇异相
  • 批准号:
    RGPIN-2018-03733
  • 财政年份:
    2021
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Discovery Grants Program - Individual
Interacting dynamics and exotic phases of quantum lattice systems
量子晶格系统的相互作用动力学和奇异相
  • 批准号:
    RGPIN-2018-03733
  • 财政年份:
    2020
  • 资助金额:
    $ 35.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了