CAPA: Collaborative Research: ARION: Taming Heterogeneity with DSLs, Approximation, and Synthesis
CAPA:合作研究:ARION:通过 DSL、近似和综合来驯服异质性
基本信息
- 批准号:1723445
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Specialization and the arrival of new technologies are key forces motivating heterogeneous systems. Heterogeneity is already in use widely, with public clouds offering instances that are heterogeneous in both compute capabilities and storage. This project identifies the following forces that will make systems heterogeneous beyond just compute and storage, complicating programming and compilation beyond the challenges that we face today. This project develops Arion, a system for compiling programs onto heterogeneous platforms based on several unifying ideas. The Arion system will be evaluated on practically relevant workloads ranging from computer vision and virtual reality, to graph computations, machine learning and stream processing. The investigators will work with partners in industry to transfer research results to products, and the tools and software developed by this project will be released as open source.The research in this project relies on four unifying ideas. The first thrust explores schedules and type systems separate a program's specification from its implementation strategy, enabling performance portability because one can select, without changing the program, its parallelism, locality, and hardware mapping. The second thrust uses domain-specific languages to describe not only programs but also artifacts used during compilation, such as schedules, resource-, and memory consistency models. This allows automatic synthesis of these artifacts. The third thrust uses resource models to bring scheduling and synthesis to large programs because the target program need not be scheduled or synthesized all at once. Instead, the compiler makes high-level decisions by estimating performance using a model before committing to low-level decisions. Finally, the investigators will use formal methods to lift programs into, and verify and synthesize programs in our DSLs, providing a high degree of automation. The verifiers and synthesizers are automatically generated from descriptions of DSLs.
专业化和新技术的到来是推动异构系统的关键力量。异构云已经得到了广泛的应用,公共云提供了计算能力和存储都异构的实例。该项目确定了以下力量,这些力量将使系统异构,不仅仅是计算和存储,使编程和编译复杂化,超越我们今天面临的挑战。这个项目开发了Arion,一个基于几个统一思想的在异构平台上编译程序的系统。Arion系统将在从计算机视觉和虚拟现实到图形计算、机器学习和流处理的实际相关工作负载上进行评估。研究人员将与行业合作伙伴合作,将研究成果转化为产品,该项目开发的工具和软件将以开源形式发布。第一个推力探索的时间表和类型系统分离程序的规范从其实现策略,使性能的可移植性,因为人们可以选择,而不改变程序,其并行性,局部性和硬件映射。第二个重点是使用特定领域的语言来描述程序和编译过程中使用的工件,如调度、资源和内存一致性模型。这允许自动合成这些工件。第三个推力使用资源模型,使调度和综合大型程序,因为目标程序不需要调度或综合一次。相反,编译器通过在提交低级决策之前使用模型估计性能来做出高级决策。最后,研究人员将使用形式化的方法将程序提升到我们的DSL中,并在我们的DSL中验证和合成程序,提供高度的自动化。验证器和合成器是根据DSL的描述自动生成的。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized data structure synthesis
广义数据结构综合
- DOI:10.1145/3180155.3180211
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Loncaric, Calvin;Ernst, Michael D.;Torlak, Emina
- 通讯作者:Torlak, Emina
Differentiable Programming for Image Processing and Deep Learning in Halide
- DOI:10.1145/3197517.3201383
- 发表时间:2018-08-01
- 期刊:
- 影响因子:6.2
- 作者:Li, Tzu-Mao;Gharbi, Michael;Ragan-Kelley, Jonathan
- 通讯作者:Ragan-Kelley, Jonathan
Exocompilation for productive programming of hardware accelerators
- DOI:10.1145/3519939.3523446
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Yuka Ikarashi;G. Bernstein;Alex Reinking;Hasan Genç;Jonathan Ragan-Kelley
- 通讯作者:Yuka Ikarashi;G. Bernstein;Alex Reinking;Hasan Genç;Jonathan Ragan-Kelley
Learning to Optimize Halide with Tree Search and Random Programs
- DOI:10.1145/3306346.3322967
- 发表时间:2019-07-01
- 期刊:
- 影响因子:6.2
- 作者:Adams, Andrew;Ma, Karima;Ragan-Kelley, Jonathan
- 通讯作者:Ragan-Kelley, Jonathan
Automatically translating image processing libraries to halide
自动将图像处理库转换为 halide
- DOI:10.1145/3355089.3356549
- 发表时间:2019
- 期刊:
- 影响因子:6.2
- 作者:Ahmad, Maaz Bin;Ragan-Kelley, Jonathan;Cheung, Alvin;Kamil, Shoaib
- 通讯作者:Kamil, Shoaib
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Ragan-Kelley其他文献
Guided Optimization for Image Processing Pipelines
图像处理管道的引导优化
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yuka Ikarashi;Jonathan Ragan-Kelley;Tsukasa Fukusato;Jun Kato;and Takeo Igarash - 通讯作者:
and Takeo Igarash
Decoupling algorithms from the organization of computation for high performance image processing
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jonathan Ragan-Kelley - 通讯作者:
Jonathan Ragan-Kelley
Jonathan Ragan-Kelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Ragan-Kelley', 18)}}的其他基金
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:
2403239 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: The Exocompiler: Decoupling Algorithms from the Organization of Computation and Data
职业:Exocompiler:将算法与计算和数据的组织解耦
- 批准号:
2328543 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAPA: Collaborative Research: ARION: Taming Heterogeneity with DSLs, Approximation, and Synthesis
CAPA:合作研究:ARION:通过 DSL、近似和综合来驯服异质性
- 批准号:
2217878 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: The Exocompiler: Decoupling Algorithms from the Organization of Computation and Data
职业:Exocompiler:将算法与计算和数据的组织解耦
- 批准号:
1846502 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
CAPA: Collaborative Research: ARION: Taming Heterogeneity with DSLs, Approximation, and Synthesis
CAPA:合作研究:ARION:通过 DSL、近似和综合来驯服异质性
- 批准号:
2217878 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAPA: Collaborative Research: ARION: Taming Heterogeneity with DSLs, Approximation, and Synthesis
CAPA:合作研究:ARION:通过 DSL、近似和综合来驯服异质性
- 批准号:
1723352 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAPA: Collaborative Research: Lightweight Abstract Memory Features
CAPA:协作研究:轻量级抽象内存功能
- 批准号:
1723571 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAPA: Collaborative Research: Lightweight Abstract Memory Features
CAPA:协作研究:轻量级抽象内存功能
- 批准号:
1723476 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAPA: Collaborative Research: A Multi-Paradigm Programming Infrastructure for Heterogeneous Architectures
CAPA:协作研究:异构架构的多范式编程基础设施
- 批准号:
1723715 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAPA: Collaborative Research: A Multi-Paradigm Programming Infrastructure for Heterogeneous Architectures
CAPA:协作研究:异构架构的多范式编程基础设施
- 批准号:
1723773 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAPA: Collaborative Research: Lightweight Abstract Memory Features
CAPA:协作研究:轻量级抽象内存功能
- 批准号:
1723624 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Adapting and Evaluating Online Materials for Undergraduate Statistics Using LON-CAPA Technology
合作研究:使用 LON-CAPA 技术调整和评估本科统计在线材料
- 批准号:
0547768 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Adapting and Evaluating Online Materials for Undergraduate Statistics using LON-CAPA Technology
合作研究:使用 LON-CAPA 技术调整和评估本科统计在线材料
- 批准号:
0311579 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Adapting and Evaluating Online Materials for Undergraduate Statistics Using LON-CAPA Technology
合作研究:使用 LON-CAPA 技术调整和评估本科统计在线材料
- 批准号:
0311695 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant