S&AS: FND: Cognitive and Reflective Monitoring Systems for Urban Environments

S

基本信息

  • 批准号:
    1724331
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

As the urban population grows, a pressing need arises for technological solutions capable of making city systems more effective and efficient. Many of the envisioned Smart City systems, such as intelligent transportation, and vehicular and security networks, require having access to a wide spectrum of online/offline data that characterizes the state of operation and the events taking place throughout the city. However, the practical deployment of city-wide sensor and processing systems faces several challenges, including financial cost, availability of network resources to transport large amounts of data with stringent quality of service requirements, and coexistence with other existing services using the same resources. This project's objective is to develop a cognitive and reflective network of mobile sensors capable of minimizing their impact on critical city communication resources using a notion of intelligence permeating the layered communication, processing, and sensing infrastructure that characterizes urban environments. The successful realization of this project will contribute significantly to fulfilling the promise of real-time Urban Internet of Things (IoT) systems in the context of limitations imposed by technology and cost. The project also includes a multi-tiered education, mentoring, and outreach plan to train the next generation of IoT systems designer and professionals.The proposed system enhances the ability of individual sensors to make navigation decisions with an intelligent layered architecture capable of providing real-time feedback on the usefulness of their produced data from the perspective of a global computational objective. The real-time adaptation process, then, is expressed over the layers of the architecture, where the agents dynamically learn utility models and control at different geographical and temporal scales. These utility models are used to orchestrate the mobile sensor's navigation within the city to enable detection and monitoring of events and dynamic processes. The outcome of this project is the first architecture of this kind where cognition and intelligence spread across scales of an urban sensing, communications, and processing infrastructure. Furthermore, the system envisioned in this project represents one of the few and most innovative examples of edge computing architecture, where the availability of low-delay processing is used to optimize the system's operations. The construction of a framework for such a complex layered scenario, which involves devices with different sensing and computation capabilities, presents inherent technical challenges which will be addressed by producing several innovations in the area of distributed and hierarchical learning and robot navigation
随着城市人口的增长,迫切需要能够使城市系统更加有效和高效的技术解决方案。许多设想的智能城市系统,如智能交通、车辆和安全网络,都需要访问广泛的在线/离线数据,这些数据表征了整个城市的运行状态和发生的事件。然而,全市范围的传感器和处理系统的实际部署面临着几个挑战,包括财务成本,网络资源的可用性,以传输大量的数据,严格的服务质量要求,以及与其他现有的服务使用相同的资源共存。该项目的目标是开发一个认知和反射网络的移动的传感器,能够最大限度地减少其对关键的城市通信资源的影响,使用智能渗透的分层通信,处理和传感基础设施,表征城市环境的概念。该项目的成功实现将大大有助于在技术和成本限制的背景下实现实时城市物联网(IoT)系统的承诺。该项目还包括一个多层次的教育,指导和推广计划,以培养下一代物联网系统设计师和专业人员。拟议的系统增强了单个传感器的能力,使其能够通过智能分层架构进行导航决策,该架构能够从全局计算目标的角度提供实时反馈,以评估其产生的数据的有用性。实时的适应过程,然后,表示在各层的架构,其中代理动态学习效用模型和控制在不同的地理和时间尺度。这些实用新型用于协调移动的传感器在城市内的导航,以实现事件和动态过程的检测和监视。该项目的成果是第一个这种类型的架构,其中认知和智能跨越城市传感,通信和处理基础设施的规模。此外,该项目中设想的系统代表了边缘计算架构中为数不多且最具创新性的示例之一,其中低延迟处理的可用性用于优化系统的操作。 为这种复杂的分层场景构建框架,其中涉及具有不同传感和计算能力的设备,提出了固有的技术挑战,这些挑战将通过在分布式和分层学习以及机器人导航领域产生若干创新来解决

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Task Allocation for Time-Varying Edge Computing Systems with Split DNNs
具有分割 DNN 的时变边缘计算系统的最优任务分配
FlyNetSim: An Open Source Synchronized UAV Network Simulator based on ns-3 and Ardupilot
Distributed leader following of an active leader for linear heterogeneous multi-agent systems
  • DOI:
    10.1016/j.sysconle.2020.104621
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi-Fan Chung;Solmaz S. Kia
  • 通讯作者:
    Yi-Fan Chung;Solmaz S. Kia
On the Feasibility of Infrastructure Assistance to Autonomous UAV Systems
A Measurement Study on Edge Computing for Autonomous UAVs
自主无人机边缘计算的测量研究
  • DOI:
    10.1145/3341568.3342109
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Callegaro, Davide;Baidya, Sabur;Levorato, Marco
  • 通讯作者:
    Levorato, Marco
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Levorato其他文献

Distributed Radiance Fields for Edge Video Compression and Metaverse Integration in Autonomous Driving
用于自动驾驶中边缘视频压缩和元宇宙集成的分布式辐射场
  • DOI:
    10.48550/arxiv.2402.14642
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eugen Šlapak;Matús Dopiriak;M. A. Faruque;J. Gazda;Marco Levorato
  • 通讯作者:
    Marco Levorato
Context-Aware Stress Monitoring using Wearable and Mobile Technologies in Everyday Settings
在日常环境中使用可穿戴和移动技术进行情境感知压力监测
  • DOI:
    10.1101/2023.04.20.23288181
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. A. H. Aqajari;S. Labbaf;Phuc Hoang Tran;Brenda Nguyen;Milad Asgari Mehrabadi;Marco Levorato;N. Dutt;Amir M. Rahmani
  • 通讯作者:
    Amir M. Rahmani
Assessing the Reliability of Different Split Computing Neural Network Applications
评估不同分割计算神经网络应用的可靠性
Enhancing Privacy in Federated Learning via Early Exit
通过提前退出增强联邦学习中的隐私
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yashuo Wu;C. Chiasserini;F. Malandrino;Marco Levorato
  • 通讯作者:
    Marco Levorato
Evaluating the Reliability of Supervised Compression for Split Computing
评估分割计算的监督压缩的可靠性

Marco Levorato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Levorato', 18)}}的其他基金

Collaborative Research: NeTS: Small: Reliable Task Offloading in Mobile Autonomous Systems Through Semantic MU-MIMO Control
合作研究:NeTS:小型:通过语义 MU-MIMO 控制实现移动自治系统中的可靠任务卸载
  • 批准号:
    2134567
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MLWiNS: Ultra-Reliable Collaborative Computing for Autonomous Unmanned Aerial Vehicles
MLWiNS:用于自主无人机的超可靠协作计算
  • 批准号:
    2003237
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Multi-Scale Analysis and Control of Smart Energy Systems
智能能源系统的多尺度分析与控制
  • 批准号:
    1611349
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
  • 批准号:
    MR/Y004000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    2311967
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024882
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024646
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024792
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024670
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
  • 批准号:
    2024409
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
  • 批准号:
    2024435
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
  • 批准号:
    2024615
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了