SPX: Collaborative Research: Ula! - An Integrated Deep Neural Network (DNN) Acceleration Framework with Enhanced Unsupervised Learning Capability

SPX:合作研究:乌拉!

基本信息

  • 批准号:
    1725447
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

In light of very recent revolutions of unsupervised learning algorithms (e.g., generative adversarial networks and dual-learning) and the emergence of their applications, three PIs/co-PI from Duke and UCSB form a team to design Ula! - an integrated DNN acceleration framework with enhanced unsupervised learning capability. The project revolutionizes the DNN research by introducing an integrated unsupervised learning computation framework with three vertically-integrated components from the aspects of software (algorithm), hardware (computing), and application (realization). The project echoes the call from the BRAIN Initiative (2013) and the Nanotechnology-Inspired Grand Challenge for Future Computing (2015) from the White House. The research outcomes will benefit both Computational Intelligence (CI) and Computer Architecture (CA) industries at large by introducing a synergy between computing paradigm and artificial intelligence (AI). The corresponding education components  enhance existing curricula and pedagogy by introducing interdisciplinary modules on the software/hardware co-design for AI with creative teaching practices, and give special attentions to women and underrepresented minority groups.The project performs three tasks: (1) At the software level, a generalized hierarchical decision-making (GHDM) system is designed to efficiently execute the state-of-the-art unsupervised learning and reinforcement learning processes with substantially reduced computation cost; (2) At the hardware level, a novel DNN computing paradigm is designed with enhanced unsupervised learning supports, based on the novelties in near data computing, GPU architecture, and FGPA + heterogeneous platforms; (3) At the application level, the usage of Ula! is exploited in scenarios that can greatly benefit from unsupervised learning and reinforcement learning. The developed techniques are also demonstrated and evaluated on three representative computing platforms: GPU, FPGA, and emerging nanoscale computing systems, respectively.
鉴于无监督学习算法的最近革命(例如,生成对抗网络和双重学习)及其应用的出现,来自杜克和UCSB的三位PI/co-PI组成了一个团队来设计Ula!- 集成的DNN加速框架,具有增强的无监督学习能力。该项目通过引入一个集成的无监督学习计算框架,从软件(算法),硬件(计算)和应用(实现)三个方面垂直集成组件,彻底改变了DNN研究。该项目响应了来自BRAIN Initiative(2013)和白宫的纳米技术启发的未来计算大挑战(2015)的呼吁。研究成果将通过引入计算范式和人工智能(AI)之间的协同作用,使计算智能(CI)和计算机架构(CA)行业受益。相应的教育部分通过引入人工智能软硬件协同设计的跨学科模块和创造性的教学实践来加强现有的课程和教学法,并特别关注妇女和代表性不足的少数群体。该项目执行三项任务:(1)在软件层面,一个广义层次决策(GHDM)系统的设计,以有效地执行国家的,本发明涉及具有显著降低的计算成本的无监督学习和强化学习过程;(2)在硬件层面,基于近数据计算的新颖性,设计了一种具有增强的无监督学习支持的DNN计算范式,GPU架构,FGPA +异构平台;(3)在应用层面,Ula!在可以极大地受益于无监督学习和强化学习的场景中使用。所开发的技术也被证明和评估三个代表性的计算平台:GPU,FPGA,和新兴的纳米级计算系统,分别。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct Training for Spiking Neural Networks: Faster, Larger, Better
  • DOI:
    10.1609/aaai.v33i01.33011311
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yujie Wu;Lei Deng;Guoqi Li;Jun Zhu;Luping Shi
  • 通讯作者:
    Yujie Wu;Lei Deng;Guoqi Li;Jun Zhu;Luping Shi
HyGCN: A GCN Accelerator with Hybrid Architecture
Rethinking the performance comparison between SNNS and ANNS
重新思考 SNN 和 ANN 之间的性能比较
  • DOI:
    10.1016/j.neunet.2019.09.005
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Deng, Lei;Wu, Yujie;Xie, Yuan
  • 通讯作者:
    Xie, Yuan
SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost Computation
NNBench-X: A Benchmarking Methodology for Neural Network Accelerator Designs
NNBench-X:神经网络加速器设计的基准测试方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Xie其他文献

GENOMIC CHARACTERISTICS OF ADHESION MOLECULES IN PATIENTS WITH SYMPTOMATIC PULMONARY EMBOLISM
有症状肺栓塞患者粘附分子的基因组特征
  • DOI:
    10.1136/heartjnl-2012-302920y.8
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Yuan Xie;Zhu Gong;Qianglin Duan;Qiang Wang;Haoming Song;A. Liang;Hao Wang;Wen;Lemin Wang
  • 通讯作者:
    Lemin Wang
The Value of Big N Target Auditors in Corporate Takeovers
Big N Target 审计师在公司收购中的价值
  • DOI:
    10.2139/ssrn.1465151
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Xie;Han Yi;Yinqi Zhang
  • 通讯作者:
    Yinqi Zhang
Curcumin restrains hepatic glucose production by blocking cAMP/PKA signaling and reducing acetyl CoA accumulation in high-fat diet (HFD)-fed mice
姜黄素通过阻断 cAMP/PKA 信号传导并减少高脂饮食 (HFD) 喂养的小鼠中乙酰辅酶 A 的积累来抑制肝葡萄糖的产生
  • DOI:
    10.1016/j.mce.2018.02.018
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Zixia Wang;Dan Xu;Linlin She;Yirui Zhang;Qingli Wei;Jiye Aa;Guangji Wang;Baolin Liu;Yuan Xie
  • 通讯作者:
    Yuan Xie
Association Between Arterial Blood Gas Variation and Intraocular Pressure in Healthy Subjects Exposed to Acute Short-Term Hypobaric Hypoxia
暴露于急性短期低压缺氧的健康受试者的动脉血气变化与眼压之间的关联
  • DOI:
    10.1167/tvst.8.6.22
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yuan Xie;Yiquan Yang;Ying Han;Di;Yunxiao Sun;Xin;Anh Nguyen;Yihan Chen;Jiaxin Tian;Qing Zhang;C. Xin;K. Cao;Huai;Xiaofang Liu;Guozhong Wang;Ningli Wang
  • 通讯作者:
    Ningli Wang
Heterogeneous spheroids with tunable interior morphologies by dropletbased microfluidics
通过基于液滴的微流体技术制备具有可调内部形态的异质球体
  • DOI:
    10.1088/1758-5090/ac5e12
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Zhen Zhan;Zeyang Liu;Haochen Nan;Jianjie Li;Yuan Xie;Chengzhi Hu
  • 通讯作者:
    Chengzhi Hu

Yuan Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Xie', 18)}}的其他基金

SHF:SMALL:Collaborative Research: Exploring Nonvolatility of Emerging Memory Technologies for Architecture Design
SHF:SMALL:合作研究:探索新兴内存技术的非易失性以用于架构设计
  • 批准号:
    1816833
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
II-New: RICARDO: Research Infrastructure for Circuit and Architecture Design with Emerging Technologies
II-新:RICARDO:利用新兴技术进行电路和架构设计的研究基础设施
  • 批准号:
    1730309
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
XPS: FULL: DSD: Collaborative Research: Parallelizing and Accelerating Metagenomic Applications
XPS:完整:DSD:协作研究:并行化和加速宏基因组应用
  • 批准号:
    1533933
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SHF: Medium: ASKS - Architecture Support for darK Silicon
SHF:中:ASKS - 对 darK Silicon 的架构支持
  • 批准号:
    1409798
  • 财政年份:
    2014
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: STEMS: STatistic Emerging Memory Simulator
SHF:小型:协作研究:STEMS:统计新兴内存模拟器
  • 批准号:
    1461698
  • 财政年份:
    2014
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SHF: Medium: ASKS - Architecture Support for darK Silicon
SHF:中:ASKS - 对 darK Silicon 的架构支持
  • 批准号:
    1500848
  • 财政年份:
    2014
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: STEMS: STatistic Emerging Memory Simulator
SHF:小型:协作研究:STEMS:统计新兴内存模拟器
  • 批准号:
    1218867
  • 财政年份:
    2012
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: Providing Predictable Timing for Task Migration in Embedded Multi-Core Environments (TiME-ME)
CSR:中:协作研究:为嵌入式多核环境中的任务迁移提供可预测的时序 (TiME-ME)
  • 批准号:
    0905365
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
ADAMS: Architecture and Design Automation for 3D Multi-core Systems
ADAMS:3D 多核系统的架构和设计自动化
  • 批准号:
    0903432
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Student Travel Support for International Symposium on High-Performance Computer Architecture (HPCA) 2010
2010 年高性能计算机架构 (HPCA) 国际研讨会的学生旅行支持
  • 批准号:
    0952841
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
  • 批准号:
    2132049
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2113307
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919117
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    1918987
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了