Integrated Data-driven Technologies for Individualized Instruction in STEM Learning Environments

用于 STEM 学习环境中个性化教学的集成数据驱动技术

基本信息

  • 批准号:
    1726550
  • 负责人:
  • 金额:
    $ 199.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop intelligent learning technology designed to react to individual student performance data, so as to personalize instruction. Such technology has significant potential to transform the American educational system by providing a low-cost way to adapt learning environments to individual students' needs and by informing advanced research on human learning. This project will create the technology for a new generation of data-driven Intelligent Tutoring Systems (ITSs), enabling the rapid creation of individualized instruction that supports learning in science, technology, engineering, and mathematics (STEM). The net result of this work will be a modular framework of educational data mining methods that offer student-adaptive, individualized support at multiple granularities, that have been implemented, iteratively refined, and empirically validated for learning impact and robustness across systems. This project will develop hierarchical data-driven, interpretable, and robust models that optimize student learning. Moreover, it will investigate whether integrating hierarchical data-driven agent decision-making with user-initiated decisions can help students learn to make better decisions for their learning. Teaching students to make effective decisions can fundamentally transform educational assessment: the emphasis should not be just on what students have learned, but on whether students can learn and adapt in productive ways in future situations. By providing individualized instruction using data, it has the potential to make individualized learning support accessible to a broad audience, including students that are traditionally underrepresented in STEM fields. These efforts serve the national interests by strengthening the nation's ability to develop and diversify the STEM workforce.The goal of this project is to develop and empirically evaluate a general hierarchical data-driven framework that would induce hierarchical hints and adaptive hierarchical pedagogical decision making policies across three STEM domains, including logic, probability, and programming, where building traditional ITSs is extremely challenging. More specifically, this project will 1) advance research on data-driven approaches to ITSs by adapting them to make subgoal hints and hierarchical decisions similar to those of human experts; 2) evaluate the robustness of our general hierarchical data-driven framework by comparing it to flat data-driven approaches not only on each individual ITS but also across ITSs; and 3) close the loop by using data-driven policies to improve students' decision-making and their long-term problem-solving abilities. The proposed work is poised to have a significant impact by making ITSs more effective, by improving student performance in STEM domains, and by teaching students to make effective pedagogical decisions. If successful, it will close the loop by using data-driven policies to support student decision-making and eventually improve their long-term problem-solving abilities through hybrid human-machine interactive decision-making in-vivo experimentation.
该项目旨在开发智能学习技术,旨在对个别学生的表现数据做出反应,从而实现个性化教学。这种技术提供了一种低成本的方式,使学习环境适应个别学生的需求,并为关于人类学习的高级研究提供了信息,因此具有巨大的潜力来改变美国的教育体系。该项目将为新一代数据驱动的智能教学系统(ITSS)创造技术,使快速创建支持科学、技术、工程和数学(STEM)学习的个性化教学成为可能。这项工作的最终结果将是教育数据挖掘方法的模块化框架,这些方法在多个粒度上提供适合学生的个性化支持,这些支持已经被实施、迭代地改进,并在整个系统中对学习影响和稳健性进行了经验验证。该项目将开发分层的、数据驱动的、可解释的和健壮的模型,以优化学生的学习。此外,它还将调查将分层数据驱动的代理决策与用户发起的决策相结合是否可以帮助学生学习做出更好的决策。教学生做出有效的决定可以从根本上改变教育评估:重点不应该仅仅是学生学到了什么,而是学生是否能够在未来的情况下以富有成效的方式学习和适应。通过使用数据提供个性化教学,它有可能使广大受众,包括传统上在STEM领域代表性不足的学生,能够获得个性化学习支持。这些努力通过加强国家发展和多样化STEM劳动力的能力来服务于国家利益。该项目的目标是开发和经验评估一个通用的分层数据驱动框架,该框架将在包括逻辑、概率和编程在内的三个STEM领域诱导分层提示和适应性分层教学决策政策,在这三个领域建立传统的ITSS是极其具有挑战性的。更具体地说,这个项目将1)通过调整数据驱动的方法来促进对ITSS的研究,使其能够做出类似于人类专家的子目标提示和分层决策;2)通过将我们的通用分层数据驱动框架与扁平的数据驱动方法进行比较,评估其稳定性,不仅在每个ITS上,而且在整个ITSS上;以及3)通过使用数据驱动的策略来改善学生的决策和长期解决问题的能力来闭合循环。拟议的工作将产生重大影响,使信息技术支持系统更加有效,提高学生在STEM领域的表现,并教导学生做出有效的教学决策。如果成功,它将通过使用数据驱动的政策支持学生决策来闭合循环,并最终通过混合式人机交互决策体内实验来提高他们的长期问题解决能力。

项目成果

期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating Critical Reinforcement Learning Framework in the Field
现场评估关键强化学习框架
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ju, S.;Zhou, G.;Barnes, T.;Chi, M.
  • 通讯作者:
    Chi, M.
Investigation of the Influence of Hint Type on Problem Solving Behavior in a Logic Proof Tutor
  • DOI:
    10.1007/978-3-319-93846-2_11
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christa Cody;Behrooz Mostafavi;T. Barnes
  • 通讯作者:
    Christa Cody;Behrooz Mostafavi;T. Barnes
The Impact of Looking Further Ahead: A Comparison of Two Data-driven Unsolicited Hint Types on Performance in an Intelligent Data-driven Logic Tutor
Extending the Hint Factory for the assistance dilemma: A novel, data-driven HelpNeed Predictor for proactive problem-solving help
  • DOI:
    10.5281/zenodo.4399683
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehak Maniktala;Christa Cody;Amy Isvik;Nicholas Lytle;Min Chi;T. Barnes
  • 通讯作者:
    Mehak Maniktala;Christa Cody;Amy Isvik;Nicholas Lytle;Min Chi;T. Barnes
More With Less: Exploring How to Use Deep Learning Effectively through Semi-supervised Learning for Automatic Bug Detection in Student Code
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Shi;Ye Mao;T. Barnes;Min Chi;T. Price
  • 通讯作者:
    Yang Shi;Ye Mao;T. Barnes;Min Chi;T. Price
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Chi其他文献

Identifying Critical Pedagogical Decisions through Adversarial Deep Reinforcement Learning
通过对抗性深度强化学习识别关键教学决策
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song Ju;Guojing Zhou;Hamoon Azizsoltani;T. Barnes;Min Chi
  • 通讯作者:
    Min Chi
Just a Few Expert Constraints Can Help: Humanizing Data-Driven Subgoal Detection for Novice Programming
只需一些专家约束即可提供帮助:为新手编程人性化数据驱动的子目标检测
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Marwan;Yang Shi;Ian Menezes;Min Chi;T. Barnes;T. Price
  • 通讯作者:
    T. Price
Does Knowing When Help Is Needed Improve Subgoal Hint Performance in an Intelligent Data-Driven Logic Tutor?
知道何时需要帮助是否可以提高智能数据驱动逻辑导师的子目标提示性能?
Investigating the Impact of Backward Strategy Learning in a Logic Tutor: Aiding Subgoal Learning Towards Improved Problem Solving
调查逻辑导师后向策略学习的影响:帮助子目标学习提高问题解决能力
Exploring the Impact of Worked Examples in a Novice Programming Environment
探索工作示例在新手编程环境中的影响

Min Chi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min Chi', 18)}}的其他基金

Generalizing Data-Driven Technologies to Improve Individualized STEM Instruction by Intelligent Tutors
推广数据驱动技术以改善智能导师的个性化 STEM 教学
  • 批准号:
    2013502
  • 财政年份:
    2020
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Standard Grant
CAREER: Improving Adaptive Decision Making in Interactive Learning Environments
职业:改善交互式学习环境中的自适应决策
  • 批准号:
    1651909
  • 财政年份:
    2017
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Continuing Grant
Educational Data Mining for Individualized Instruction in STEM Learning Environments
STEM 学习环境中个性化教学的教育数据挖掘
  • 批准号:
    1432156
  • 财政年份:
    2014
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Standard Grant
CAREER: Building long-term climate resilience in 21st-century regional urban land systems through integrated data-driven research and education
职业:通过综合数据驱动的研究和教育,在 21 世纪区域城市土地系统中建立长期的气候适应能力
  • 批准号:
    2239859
  • 财政年份:
    2023
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Continuing Grant
Integrated software platform to enhance school mental health assessment and data-driven student services
综合软件平台,加强学校心理健康评估和数据驱动的学生服务
  • 批准号:
    10874882
  • 财政年份:
    2023
  • 资助金额:
    $ 199.94万
  • 项目类别:
Integrated software platform to enhance school mental health assessment and data-driven student services
综合软件平台,加强学校心理健康评估和数据驱动的学生服务
  • 批准号:
    10696497
  • 财政年份:
    2023
  • 资助金额:
    $ 199.94万
  • 项目类别:
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
  • 批准号:
    547587-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Revolutionizing Canada's Aging Civil Infrastructure Assessment and Renewal: An Integrated, Multi-Scale, Remote Sensing, Data-Driven Approach
彻底改变加拿大老化的民用基础设施评估和更新:综合、多尺度、遥感、数据驱动的方法
  • 批准号:
    RGPIN-2021-03597
  • 财政年份:
    2022
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Discovery Grants Program - Individual
DATA-DRIVEN INTEGRATED TRANSPORT SOLUTIONS - USING PERSONAS IN POLICY-MAKING
数据驱动的集成交通解决方案 - 在政策制定中使用人物角色
  • 批准号:
    2763665
  • 财政年份:
    2022
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Studentship
Towards an integrated data-driven flood risk forecasting framework
建立综合数据驱动的洪水风险预测框架
  • 批准号:
    547587-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Revolutionizing Canada's Aging Civil Infrastructure Assessment and Renewal: An Integrated, Multi-Scale, Remote Sensing, Data-Driven Approach
彻底改变加拿大老化的民用基础设施评估和更新:综合、多尺度、遥感、数据驱动的方法
  • 批准号:
    RGPIN-2021-03597
  • 财政年份:
    2021
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated data-driven analysis of materials properties by nano-electron probe scanning real/reciprocal space
通过纳米电子探针扫描实/倒易空间对材料特性进行集成数据驱动分析
  • 批准号:
    21H04616
  • 财政年份:
    2021
  • 资助金额:
    $ 199.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了