Educational Data Mining for Individualized Instruction in STEM Learning Environments
STEM 学习环境中个性化教学的教育数据挖掘
基本信息
- 批准号:1432156
- 负责人:
- 金额:$ 63.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project, at North Carolina State University, will explore ways to augment intelligent tutoring systems by using methods that use historical data from student work on assigned exercises, to enhance the tutoring system's ability to decide what to teach and how to teach it. This research will utilize both hint generation and worked examples. The PI team will begin by augmenting three existing learning environments, adding data-driven techniques for the automatic generation of next-step hints and for the automatic selection of learning activities. Subsequent studies will increase understanding of the benefits provided by hint mechanisms by comparing the effectiveness of sub-goal hints with that of next-step hints. This will then lead to empirical evaluations of the learning impact of such data-driven student support. The project team hypothesizes that existing logic and probability tutors will produce significant learning gains when enhanced by data-driven hint generation coupled with data-driven pedagogical strategy induction. The project will compare logic, probability, and programming learning with and without data-driven hints and data-driven pedagogies, measuring quantitative and qualitative impact on student success. The research team will use a variety of measures of learning, such as time to learn, number of errors made, number of hints requested, and engagement, as well as qualitative measures such as student surveys that gauge self-efficacy and motivation. Student performance data will be analyzed using correlation, analysis of variance, regression and significance testing.
这个项目,在北卡罗来纳州州立大学,将探索如何增强智能辅导系统的方法,通过使用的方法,使用历史数据,从学生的工作分配的练习,以提高辅导系统的能力,以决定教什么和如何教它。 PI团队将开始增强三个现有的学习环境,增加数据驱动的技术,用于自动生成下一步提示和自动选择学习活动。 后续的研究将通过比较子目标提示与下一步提示的有效性来增加对提示机制所提供的益处的理解。 这将导致对这种数据驱动的学生支持的学习影响的实证评估。项目团队假设,现有的逻辑和概率导师将产生显着的学习收益时,通过数据驱动的提示生成加上数据驱动的教学策略诱导增强。 该项目将比较逻辑,概率和编程学习,有和没有数据驱动的提示和数据驱动的方法,测量对学生成功的定量和定性影响。研究团队将使用各种学习措施,如学习时间,错误数量,要求的提示数量和参与度,以及定性措施,如衡量自我效能和动机的学生调查。学生的表现数据将使用相关性,方差分析,回归和显著性检验进行分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min Chi其他文献
Identifying Critical Pedagogical Decisions through Adversarial Deep Reinforcement Learning
通过对抗性深度强化学习识别关键教学决策
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Song Ju;Guojing Zhou;Hamoon Azizsoltani;T. Barnes;Min Chi - 通讯作者:
Min Chi
Just a Few Expert Constraints Can Help: Humanizing Data-Driven Subgoal Detection for Novice Programming
只需一些专家约束即可提供帮助:为新手编程人性化数据驱动的子目标检测
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
S. Marwan;Yang Shi;Ian Menezes;Min Chi;T. Barnes;T. Price - 通讯作者:
T. Price
Does Knowing When Help Is Needed Improve Subgoal Hint Performance in an Intelligent Data-Driven Logic Tutor?
知道何时需要帮助是否可以提高智能数据驱动逻辑导师的子目标提示性能?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nazia Alam;Mehak Maniktala;Behrooz Mostafavi;Min Chi;T. Barnes - 通讯作者:
T. Barnes
Investigating the Impact of Backward Strategy Learning in a Logic Tutor: Aiding Subgoal Learning Towards Improved Problem Solving
调查逻辑导师后向策略学习的影响:帮助子目标学习提高问题解决能力
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.9
- 作者:
Preya Shabrina;Behrooz Mostafavi;Mark Abdelshiheed;Min Chi;T. Barnes - 通讯作者:
T. Barnes
Exploring the Impact of Worked Examples in a Novice Programming Environment
探索工作示例在新手编程环境中的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rui Zhi;T. Price;S. Marwan;Alexandra Milliken;T. Barnes;Min Chi - 通讯作者:
Min Chi
Min Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min Chi', 18)}}的其他基金
Generalizing Data-Driven Technologies to Improve Individualized STEM Instruction by Intelligent Tutors
推广数据驱动技术以改善智能导师的个性化 STEM 教学
- 批准号:
2013502 - 财政年份:2020
- 资助金额:
$ 63.94万 - 项目类别:
Standard Grant
Integrated Data-driven Technologies for Individualized Instruction in STEM Learning Environments
用于 STEM 学习环境中个性化教学的集成数据驱动技术
- 批准号:
1726550 - 财政年份:2017
- 资助金额:
$ 63.94万 - 项目类别:
Standard Grant
CAREER: Improving Adaptive Decision Making in Interactive Learning Environments
职业:改善交互式学习环境中的自适应决策
- 批准号:
1651909 - 财政年份:2017
- 资助金额:
$ 63.94万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
- 批准号:
2201799 - 财政年份:2022
- 资助金额:
$ 63.94万 - 项目类别:
Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
- 批准号:
2201796 - 财政年份:2022
- 资助金额:
$ 63.94万 - 项目类别:
Continuing Grant
Support for U.S. Doctoral Students to Participate in the Annual Artificial Intelligence in Education (AIED) and co-located Educational Data Mining (EDM) Conferences
支持美国博士生参加年度教育人工智能 (AIED) 和同期举办的教育数据挖掘 (EDM) 会议
- 批准号:
2225091 - 财政年份:2022
- 资助金额:
$ 63.94万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
- 批准号:
2201800 - 财政年份:2022
- 资助金额:
$ 63.94万 - 项目类别:
Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
- 批准号:
2201797 - 财政年份:2022
- 资助金额:
$ 63.94万 - 项目类别:
Continuing Grant
Collaborative Research: Investigating Gender Differences in Digital Learning Games with Educational Data Mining
协作研究:利用教育数据挖掘调查数字学习游戏中的性别差异
- 批准号:
2201798 - 财政年份:2022
- 资助金额:
$ 63.94万 - 项目类别:
Continuing Grant
Mining educational data to provide intelligent information and personalized recommendations
挖掘教育数据,提供智能信息和个性化推荐
- 批准号:
RGPIN-2020-05837 - 财政年份:2022
- 资助金额:
$ 63.94万 - 项目类别:
Discovery Grants Program - Individual
Mining educational data to provide intelligent information and personalized recommendations
挖掘教育数据,提供智能信息和个性化推荐
- 批准号:
RGPIN-2020-05837 - 财政年份:2021
- 资助金额:
$ 63.94万 - 项目类别:
Discovery Grants Program - Individual
Mining educational data to provide intelligent information and personalized recommendations
挖掘教育数据,提供智能信息和个性化推荐
- 批准号:
RGPIN-2020-05837 - 财政年份:2020
- 资助金额:
$ 63.94万 - 项目类别:
Discovery Grants Program - Individual
Using Learning Analytics and Educational Data Mining to Evaluate an Educational Game
使用学习分析和教育数据挖掘来评估教育游戏
- 批准号:
545111-2019 - 财政年份:2019
- 资助金额:
$ 63.94万 - 项目类别:
University Undergraduate Student Research Awards