CAREER: Improving Adaptive Decision Making in Interactive Learning Environments
职业:改善交互式学习环境中的自适应决策
基本信息
- 批准号:1651909
- 负责人:
- 金额:$ 54.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Interactive Learning Environments (ILEs) hold great promise for improving student performance in STEM education. While, traditionally, such systems have focused on teaching students subject matter, an equally important facet is to teach them how become better learners. The objective of this project is to develop an integrated research and education program that investigates the how to improve decision-making in ILEs and the impact of integrating ILE decisions with user-initiated decisions. The primary research goal lies in creating and improving ILEs directly from data, using state-of-the-art machine-learning techniques. The primary educational goal lies in preparing students to act independently and make good choices in new situations for which they do not immediately know how to act. The work will contribute in enabling ILEs to be more effective by improving student performance in STEM domains, by teaching students to make effective pedagogical decisions, and by making the decisions made by such systems more transparent to both teachers and domain experts.The project will develop and empirically evaluate a general decision-making framework across three ILE or STEM domains. The project naturally integrates both the research and education goals. More specifically, the project will 1) advance research on the application of Reinforcement Learning by adapting it to make hierarchical decisions similar to those of human experts; 2) advance the understanding of ILEs and Reinforcement Learning algorithms by inducing compact policies that highlight key decisions and that can inform one?s understanding of the educational domain; and 3) close the loop by using data-driven policies to support student decision-making and eventually improve their long-term problem-solving abilities through hybrid human-machine interactive decision making in vivo experimentation.
交互式学习环境 (ILE) 有望提高学生在 STEM 教育中的表现。 虽然传统上,此类系统侧重于教授学生主题,但同样重要的一个方面是教他们如何成为更好的学习者。 该项目的目标是开发一个综合研究和教育计划,研究如何改进 ILE 决策以及将 ILE 决策与用户发起的决策相结合的影响。主要研究目标在于使用最先进的机器学习技术直接从数据创建和改进 ILE。 主要教育目标在于让学生做好独立行动的准备,并在他们不知道如何行动的新情况下做出正确的选择。 这项工作将通过提高学生在 STEM 领域的表现、教导学生做出有效的教学决策以及使此类系统做出的决策对教师和领域专家更加透明,从而使 ILE 更加有效。该项目将开发并实证评估跨三个 ILE 或 STEM 领域的通用决策框架。该项目自然地整合了研究和教育目标。更具体地说,该项目将 1) 通过调整强化学习来做出类似于人类专家的分层决策,从而推进强化学习应用的研究; 2)通过引入强调关键决策并可以帮助人们理解教育领域的紧凑政策,促进对 ILE 和强化学习算法的理解; 3)通过使用数据驱动的政策来支持学生决策形成闭环,并最终通过体内混合人机交互决策实验提高他们长期解决问题的能力。
项目成果
期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Big, Little, or Both? Exploring the Impact of Granularity on Learning for Students with Different Incoming Competence
大,小,还是两者兼而有之?
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Guojing Zhou;Xi Yang;Min Chi
- 通讯作者:Min Chi
Student-Tutor Mixed-Initiative Decision-making Supported by Deep Reinforcement Learning.
深度强化学习支持的学生-导师混合主动决策。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ju, S.
- 通讯作者:Ju, S.
Evaluating Critical Reinforcement Learning Framework in the Field
现场评估关键强化学习框架
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ju, S.;Zhou, G.;Barnes, T.;Chi, M.
- 通讯作者:Chi, M.
Empirically Evaluating the Application of POMDP vs. MDP Towards the Induction of Pedagogical Strategies.
实证评估 POMDP 与 MDP 在教学策略归纳中的应用。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Shen, S.;Mostafavi, B.;Lynch, C.;Barnes, T.;Chi, M.
- 通讯作者:Chi, M.
HOPE: Human-Centric Off-Policy Evaluation for E-Learning and Healthcare
- DOI:10.48550/arxiv.2302.09212
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Ge Gao;Song Ju;Markel Sanz Ausin;Min Chi
- 通讯作者:Ge Gao;Song Ju;Markel Sanz Ausin;Min Chi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min Chi其他文献
Identifying Critical Pedagogical Decisions through Adversarial Deep Reinforcement Learning
通过对抗性深度强化学习识别关键教学决策
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Song Ju;Guojing Zhou;Hamoon Azizsoltani;T. Barnes;Min Chi - 通讯作者:
Min Chi
Just a Few Expert Constraints Can Help: Humanizing Data-Driven Subgoal Detection for Novice Programming
只需一些专家约束即可提供帮助:为新手编程人性化数据驱动的子目标检测
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
S. Marwan;Yang Shi;Ian Menezes;Min Chi;T. Barnes;T. Price - 通讯作者:
T. Price
Does Knowing When Help Is Needed Improve Subgoal Hint Performance in an Intelligent Data-Driven Logic Tutor?
知道何时需要帮助是否可以提高智能数据驱动逻辑导师的子目标提示性能?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nazia Alam;Mehak Maniktala;Behrooz Mostafavi;Min Chi;T. Barnes - 通讯作者:
T. Barnes
Investigating the Impact of Backward Strategy Learning in a Logic Tutor: Aiding Subgoal Learning Towards Improved Problem Solving
调查逻辑导师后向策略学习的影响:帮助子目标学习提高问题解决能力
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:4.9
- 作者:
Preya Shabrina;Behrooz Mostafavi;Mark Abdelshiheed;Min Chi;T. Barnes - 通讯作者:
T. Barnes
Exploring the Impact of Worked Examples in a Novice Programming Environment
探索工作示例在新手编程环境中的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Rui Zhi;T. Price;S. Marwan;Alexandra Milliken;T. Barnes;Min Chi - 通讯作者:
Min Chi
Min Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min Chi', 18)}}的其他基金
Generalizing Data-Driven Technologies to Improve Individualized STEM Instruction by Intelligent Tutors
推广数据驱动技术以改善智能导师的个性化 STEM 教学
- 批准号:
2013502 - 财政年份:2020
- 资助金额:
$ 54.78万 - 项目类别:
Standard Grant
Integrated Data-driven Technologies for Individualized Instruction in STEM Learning Environments
用于 STEM 学习环境中个性化教学的集成数据驱动技术
- 批准号:
1726550 - 财政年份:2017
- 资助金额:
$ 54.78万 - 项目类别:
Standard Grant
Educational Data Mining for Individualized Instruction in STEM Learning Environments
STEM 学习环境中个性化教学的教育数据挖掘
- 批准号:
1432156 - 财政年份:2014
- 资助金额:
$ 54.78万 - 项目类别:
Standard Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
- 批准号:
478732 - 财政年份:2023
- 资助金额:
$ 54.78万 - 项目类别:
Operating Grants
SBIR Phase I: Improving indoor agriculture grow light efficiency with adaptive light shaping
SBIR 第一阶段:通过自适应光整形提高室内农业种植光效率
- 批准号:
2304339 - 财政年份:2023
- 资助金额:
$ 54.78万 - 项目类别:
Standard Grant
Improving Programming Skills of Engineering Students at Historically Black Colleges and Universities Using AI-enhanced Personalized Adaptive Learning Tools
使用人工智能增强的个性化自适应学习工具提高传统黑人学院和大学工程专业学生的编程技能
- 批准号:
2236002 - 财政年份:2023
- 资助金额:
$ 54.78万 - 项目类别:
Standard Grant
Improving Programming Skills of Engineering Students at Historically Black Colleges and Universities Using AI-enhanced Personalized Adaptive Learning Tools
使用人工智能增强的个性化自适应学习工具提高传统黑人学院和大学工程专业学生的编程技能
- 批准号:
2235731 - 财政年份:2023
- 资助金额:
$ 54.78万 - 项目类别:
Standard Grant
CAREER: Improving Undergraduate Computing Education by Scaffolding Write Code Problems with Automatically Generated, Personalized, and Adaptive Parsons Problems
职业:通过使用自动生成、个性化和自适应帕森斯问题搭建脚手架编写代码问题来改善本科计算机教育
- 批准号:
2143028 - 财政年份:2022
- 资助金额:
$ 54.78万 - 项目类别:
Continuing Grant
W-HTF-RL: Collaborative Research: Improving the Future of Retail and Warehouse Workers with Upper Limb Disabilities via Perceptive and Adaptive Soft Wearable Robots
W-HTF-RL:协作研究:通过感知和自适应软可穿戴机器人改善上肢残疾的零售和仓库工人的未来
- 批准号:
2231419 - 财政年份:2022
- 资助金额:
$ 54.78万 - 项目类别:
Standard Grant
Collaborative Research: Individualizing Instruction and Improving Research Using Adaptive Testing
协作研究:利用适应性测试进行个性化教学和改进研究
- 批准号:
2141847 - 财政年份:2022
- 资助金额:
$ 54.78万 - 项目类别:
Standard Grant
ERI: Improving the Learning Efficiency of Adaptive Optimal Control Systems in Information-Limited Environments
ERI:提高信息有限环境中自适应最优控制系统的学习效率
- 批准号:
2138206 - 财政年份:2022
- 资助金额:
$ 54.78万 - 项目类别:
Standard Grant
An Adaptive Intervention Trial of Home Testing with Behavioral Nudges for Improving COVID-19 Testing and Prevention among People Affected by Diabetes
通过行为助推进行家庭检测的适应性干预试验,以改善糖尿病患者的 COVID-19 检测和预防
- 批准号:
10447445 - 财政年份:2022
- 资助金额:
$ 54.78万 - 项目类别:
Improving momentary suicide risk identification through adaptive time sampling
通过自适应时间采样提高瞬时自杀风险识别
- 批准号:
10575138 - 财政年份:2022
- 资助金额:
$ 54.78万 - 项目类别: