Understanding the Multiscale Mechanics of Nerve Endings to Address Visceral Pain

了解神经末梢的多尺度机制以解决内脏疼痛

基本信息

  • 批准号:
    1727185
  • 负责人:
  • 金额:
    $ 43.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Visceral pain associated with irritable bowel syndrome afflicts 13% of the US population, costing approximately $30 billion annually. Mechanical distension of hollow visceral organs evokes visceral pain. Drugs for visceral pain affect both peripheral and central nervous systems (CNS) due to similar cellular sensory pathways. Patients treated in this way suffer brain and spinal nerve related side effects, and among those, physical dependency and addiction are particularly important. Visceral pain by mechanical distension of organs initiates in the periphery, making it possible that targeting the receptors of biomechanical loading could reduce the brain and spine side effects. This project aims to understand the biomechanics of visceral nerves as relates to chronic visceral pain. This research will reveal novel therapeutic targets in the nerve ending-tissue complex specific to visceral organs, minimizing CNS side effects and improving health and quality of life for patients suffering chronic visceral pain. This project will engage students from underrepresented groups, particularly women, in middle school, high school and university through integrated outreach. Research in the PI's and Co-PI's labs will be integrated with outreach and diversity programs at the Danbury Library and UConn to engage students from underrepresented groups, particularly women, in middle school, high school and university.The overall objective of this project is to understand the multiscale biomechanics of colorectal tissue and the micromechanical environment surrounding sensory nerve endings in both control (healthy) and TNBS-treated (in pain) colorectums. The central hypothesis posits that factors governing visceral mechanosensation and sensitization include: 1) varying mechanical properties across different layers of colorectal tissue (e.g. mucosal, muscular), 2) distinct micromechanics at couplings between nerve endings and their extracellular matrix, and 3) dynamic changes in tissue biomechanics following colorectal tissue damage and nerve ending regeneration (in TNBS-treated colorectum). This work aims to determine: 1) tissue-level biomechanics of mucosal and muscular layers of colorectum from both control (healthy) and TNBS-treated (in pain) mice, 2) micro-mechanical environments of individual colorectal sensory nerve endings from both control and TNBS-treated mice, and 3) the impact of nerve ending stress/strain on functional heterogeneity of visceral neural mechanosensation and sensitization via multiscale modeling and simulation. This project leverages novel approaches, including: a mouse IBS model of pain produced by trinitrobenzene sulfonic acid (TNBS), genetic sensory nerve labeling, optical tissue clearing, and multiscale modeling of mechanosensation together with nonlinear soft tissue biomechanics and imaging of collagen fibers. This research will introduce previously overlooked biomechanics as a critical factor in visceral nociception and pain, establish novel biomechanical tools and expand current knowledge of visceral mechanosensation and pain.
与肠易激综合征相关的内脏疼痛困扰着13%的美国人口,每年造成约300亿美元的损失。中空内脏器官的机械扩张会引起内脏疼痛。内脏痛药物通过相似的细胞感觉通路影响周围和中枢神经系统(CNS)。以这种方式治疗的患者会出现与大脑和脊神经相关的副作用,其中,身体依赖和成瘾尤其重要。器官机械扩张引起的内脏疼痛始于外周,靶向生物力学负荷的受体可以减少脑和脊柱的副作用。本项目旨在了解内脏神经的生物力学与慢性内脏疼痛的关系。这项研究将揭示特定于内脏器官的神经末梢-组织复合体的新治疗靶点,将中枢神经系统副作用降至最低,并改善慢性内脏疼痛患者的健康和生活质量。该项目将通过综合宣传,吸引代表人数不足的群体的学生,特别是妇女,在初中、高中和大学学习。PI和Co-Pi实验室的研究将与丹伯里图书馆和康涅狄格州大学的推广和多样性计划相结合,以吸引来自初中、高中和大学中代表性不足群体的学生,特别是女性。该项目的总体目标是了解对照(健康)和TNBS治疗(疼痛)结直肠癌中结肠组织的多尺度生物力学和感觉神经末梢周围的微观机械环境。该中心假设,控制内脏机械感觉和敏化的因素包括:1)不同层次的大肠组织(如粘膜、肌肉)的力学性质不同;2)神经末梢与其细胞外基质之间偶联的不同微观力学;以及3)大肠组织损伤和神经末梢再生后组织生物力学的动态变化(在TNBS处理的结肠直肠)。这项工作旨在通过多尺度建模和模拟来确定:1)对照组(健康)和TNBS处理组(疼痛)小鼠结肠粘膜和肌层的组织水平生物力学;2)对照组和TNBS处理组小鼠单个结直肠感觉神经末梢的微观力学环境;3)神经末梢应力/应变对内脏神经机械感觉和敏化功能异质性的影响。该项目利用了新的方法,包括:三硝基苯磺酸(TNBS)产生的小鼠IBS疼痛模型、遗传感觉神经标记、光学组织清除、机械感觉的多尺度建模以及非线性软组织生物力学和胶原纤维成像。这项研究将引入以前被忽视的生物力学作为内脏伤害和疼痛的关键因素,建立新的生物力学工具,并扩大目前关于内脏机械感觉和疼痛的知识。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical recording reveals topological distribution of functionally classified colorectal afferent neurons in intact lumbosacral DRG
  • DOI:
    10.14814/phy2.14097
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Guo, Tiantian;Bian, Zichao;Feng, Bin
  • 通讯作者:
    Feng, Bin
Differential biomechanical properties of mouse distal colon and rectum innervated by the splanchnic and pelvic afferents
Toward Elucidating the Physiological Impacts of Residual Stresses in the Colorectum
阐明结直肠残余应力的生理影响
  • DOI:
    10.1115/1.4051846
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao, Y.;Siri, S.;Feng, B.;Pierce, D. M.
  • 通讯作者:
    Pierce, D. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Feng其他文献

Seismic Analysis of the Pounding on the Expansion Joints of Long-Span Cable-Stayed Bridge
大跨斜拉桥伸缩缝冲击地震分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wu Fangwen;Bin Feng;Qingkai Zhang;Cao Yang
  • 通讯作者:
    Cao Yang
Targeting of sodium borocaptate (BSH)to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His
使用 ZZ-His 与抗 EGFR 抗体缀合的免疫脂质体将硼己酸钠 (BSH) 靶向神经胶质瘤细胞
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iwanaga S;Khan SM.;Kaneko I;Christodoulou Z;Newbold C;Yuda M;Janse CJ;Bin Feng
  • 通讯作者:
    Bin Feng
Cascaded Boundary Network for High-Quality Temporal Action Proposal Generation
用于生成高质量时间行动提案的级联边界网络
Self-sustained combustion of CO with transient changes and reaction mechanism over CuCe0.75Zr0.25O delta powder for honeycomb ceramic catalyst
蜂窝陶瓷催化剂用CuCe0.75Zr0.25O δ粉末CO瞬时变化自持燃烧及反应机理
  • DOI:
    10.1016/j.fuel.2019.116637
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Kang Running;Wei Xiaolin;Ma P;ong;Bin Feng;He Junyao;Hao Qinglan;Dou Baojuan
  • 通讯作者:
    Dou Baojuan
Electrochemical Protonation / Oxidation of SrCoO2.5 Films using CAN as the Solid Electrolyte
使用 CAN 作为固体电解质的 SrCoO2.5 薄膜的电化学质子化/氧化
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qian Yang;Joonhyuk Lee;Hyoungjeen Jeen;Bin Feng;Yuichi Ikuhara;Hai Jun Cho;and Hiromichi Ohta
  • 通讯作者:
    and Hiromichi Ohta

Bin Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bin Feng', 18)}}的其他基金

CAREER: Understanding Peripheral Neuromodulation to Enhance Non-drug Management of Chronic Pain
职业:了解周围神经调节以加强慢性疼痛的非药物治疗
  • 批准号:
    1844762
  • 财政年份:
    2019
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Continuing Grant

相似海外基金

Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/2
  • 财政年份:
    2024
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Fellowship
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Continuing Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Fellowship
CAREER: Multiscale Mechanics of Carbon Nanotube-Polymer Composites
职业:碳纳米管-聚合物复合材料的多尺度力学
  • 批准号:
    2334166
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
  • 批准号:
    2331017
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Multiscale Effects of Aging on Elastic Arterial Tissue Mechanics
衰老对弹性动脉组织力学的多尺度影响
  • 批准号:
    10811244
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
CAREER: Connecting biology and mechanics through a multiscale modeling of pubertal mammary gland development
职业:通过青春期乳腺发育的多尺度建模将生物学和力学联系起来
  • 批准号:
    2240155
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Continuing Grant
CAREER: Electro-Chemo-Mechanics of Multiscale Active Materials for Next-Generation Energy Storage
职业:用于下一代储能的多尺度活性材料的电化学力学
  • 批准号:
    2237990
  • 财政年份:
    2023
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2205007
  • 财政年份:
    2022
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Continuing Grant
Multiscale mechanics: folded globular proteins as hydrogel Lego bricks
多尺度力学:折叠球状蛋白质作为水凝胶乐高积木
  • 批准号:
    2751760
  • 财政年份:
    2022
  • 资助金额:
    $ 43.25万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了