DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences

DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵

基本信息

  • 批准号:
    1728340
  • 负责人:
  • 金额:
    $ 44.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

Thermal energy, also known as heat, flows naturally from hot objects to cold objects. One consequence of this heat flow is that it is difficult to create objects with localized "hot spots," even when heat is applied to a single spot. When touching a hot pan on the stove, the temperature of the lid on top of the pan is not much different than the bottom where the heat is applied. Depositing and maintaining thermal energy in a small region of space becomes even more challenging as the object's size approaches the tens to hundreds of nanometers, or about 1,000 times smaller than a human hair. Yet, the ability to control heat flow and thus temperature at nanoscopic dimensions has important implications for applications ranging from data storage and the local control of chemical reactions to photothermal therapies for disease treatment and pain management through ion channel stimulation. With support from the Designing Materials to Revolutionize and Engineer our Future (DMREF) Program in the Division of Chemistry (CHE) and the Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET), Professor David J. Masiello from the University of Washington, Professor Katherine A. Willets from Temple University, and Professor Stephan Link from Rice University are developing methods to theoretically design and experimentally realize a new class of materials capable of controllably directing temperature increases to nanoscale regions of space. Beyond impacting a wide variety of applications, the project is also facilitating the interdisciplinary training of students and postdoctoral researchers through student exchange between the three research groups. Together, the researchers and their students are designing plasmonic nanostructures that exploit Fano interferences to focus and convert optical radiation into precise nanoscopic temperature profiles that are actively tunable from the far-field. They are developing computer simulations to solve the coupled Maxwell-heat diffusion equations and using them to design novel plasmonic nanostructures with Fano interferences that are capable of localizing spatial temperature profiles at dimensions below the diffraction limit. The best candidates are then created in the laboratory and characterized using optical microscopies. Diffraction-limited, single-nanoparticle photothermal absorption spectroscopy techniques measure the heat power absorbed as well as the associated temperature change induced in the target material. Fluorescently-labeled stem-loop DNA structures are used to achieve super-resolution imaging of the nanoscopic temperature profile. The imaging results are then input into the design of the next generation of structures, providing the iterative feedback that is critical to the project's success.
热能,也称为热,自然地从热的物体流向冷的物体。这种热流的一个后果是,即使将热量施加到一个单独的点上,也很难创建具有局部“热点”的对象。当触摸炉子上的热锅时,锅盖上的温度与加热的底部没有太大差别。随着物体的大小接近几十到数百纳米,或者说大约1000倍于人类头发的尺寸,在很小的空间区域储存和保持热能变得更加具有挑战性。然而,在纳米尺度上控制热流从而控制温度的能力对从数据存储和化学反应的局部控制到通过离子通道刺激进行疾病治疗和疼痛控制的光热疗法等应用具有重要意义。在化学系(CHE)和化学、生物工程、环境和交通系统系(CBET)设计材料革新和设计我们的未来(DMREF)计划的支持下,华盛顿大学的David J.Masiello教授、Temple大学的Katherine A.Willets教授和莱斯大学的Stephan Link教授正在开发方法,从理论上设计并实验实现一种能够将温度上升控制在空间纳米级区域的新型材料。除了影响广泛的应用,该项目还通过三个研究小组之间的学生交流,促进对学生和博士后研究人员的跨学科培训。研究人员和他们的学生一起设计了等离子体纳米结构,这种结构利用法诺干涉来聚焦光辐射,并将其转化为精确的纳米温度分布,这些温度分布可以从远场主动调节。他们正在开发计算机模拟来求解耦合的麦克斯韦-热扩散方程,并利用它们来设计具有Fano干扰的新型等离子体纳米结构,这些结构能够将空间温度分布局部化到低于衍射极限的维度。然后,在实验室中创造出最佳候选者,并使用光学显微镜对其进行表征。衍射受限的单纳米颗粒光热吸收光谱技术测量被吸收的热功率以及目标材料中引起的相关温度变化。荧光标记的茎环DNA结构被用来实现纳米温度分布的超分辨率成像。成像结果随后被输入到下一代结构的设计中,提供对项目成功至关重要的迭代反馈。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods
波长相关光热成像探针亚衍射耦合等离子体纳米棒之间的纳米级温度差异
  • DOI:
    10.1021/acs.nanolett.1c01740
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Hosseini Jebeli, Seyyed Ali;West, Claire A.;Lee, Stephen A.;Goldwyn, Harrison J.;Bilchak, Connor R.;Fakhraai, Zahra;Willets, Katherine A.;Link, Stephan;Masiello, David J.
  • 通讯作者:
    Masiello, David J.
Active Far-Field Control of the Thermal Near-Field via Plasmon Hybridization
  • DOI:
    10.1021/acsnano.9b04968
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Bhattacharjee, Ujjal;West, Claire A.;Masiello, David J.
  • 通讯作者:
    Masiello, David J.
Plasmon Heating Promotes Ligand Reorganization on Single Gold Nanorods
  • DOI:
    10.1021/acs.jpclett.9b00079
  • 发表时间:
    2019-03-21
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Cheng, Xiaoyu;Anthony, Taryn P.;Willets, Katherine A.
  • 通讯作者:
    Willets, Katherine A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Willets其他文献

Katherine Willets的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Willets', 18)}}的其他基金

Collaborative Research: Workshop: Challenges and Prospects for the Next 10 Years of Nanochemistry
合作研究:研讨会:纳米化学未来十年的挑战与前景
  • 批准号:
    2316672
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
  • 批准号:
    2118389
  • 财政年份:
    2021
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Synchronizing the chemical composition of silver nanoparticle surfaces
同步银纳米粒子表面的化学成分
  • 批准号:
    2003613
  • 财政年份:
    2020
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
OP: Super-resolution imaging of plasmon-molecule interactions
OP:等离子体分子相互作用的超分辨率成像
  • 批准号:
    1807269
  • 财政年份:
    2018
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Probing the location, number, and function of surface-bound antibodies on plasmonic nanoparticle biosensors using super-resolution fluorescence imaging
使用超分辨率荧光成像探测等离子体纳米颗粒生物传感器上表面结合抗体的位置、数量和功能
  • 批准号:
    1540926
  • 财政年份:
    2015
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Understanding plasmon-enhanced electromagnetic hot spots for surface-enhanced spectroscopies
了解表面增强光谱的等离子体增强电磁热点
  • 批准号:
    1540927
  • 财政年份:
    2015
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Continuing Grant
Probing the location, number, and function of surface-bound antibodies on plasmonic nanoparticle biosensors using super-resolution fluorescence imaging
使用超分辨率荧光成像探测等离子体纳米颗粒生物传感器上表面结合抗体的位置、数量和功能
  • 批准号:
    1402610
  • 财政年份:
    2014
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Understanding plasmon-enhanced electromagnetic hot spots for surface-enhanced spectroscopies
了解表面增强光谱的等离子体增强电磁热点
  • 批准号:
    1409178
  • 财政年份:
    2014
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 44.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了