Understanding plasmon-enhanced electromagnetic hot spots for surface-enhanced spectroscopies

了解表面增强光谱的等离子体增强电磁热点

基本信息

  • 批准号:
    1540927
  • 负责人:
  • 金额:
    $ 28.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-16 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

With this award, the Chemical Measurement and Imaging Program is funding the research of Katherine Willets at the University of Texas to develop new techniques to study the detailed structure of surfaces. These techniques will improve the functioning of a variety of chemical sensors, in particular a type based on a phenomenon known as surface-enhanced Raman scattering, or SERS. While SERS is an intensely promising sensing technology, its commercial utilization has been limited by problems that appear to be due to non-uniform surfaces that are not well-characterized or controlled. The current research seeks to improve the functioning of devices based on SERS technology by studying the signals that come from the surface when small particles of gold and silver are added. When molecules come into contact with surfaces treated with these small bits of gold and silver, the resulting SERS signal is enhanced, sometimes by more than a million-fold. The investigators are bringing a variety of analysis techniques to bear on this system in order to understand how this enhancement occurs and, more importantly, how it can be controlled. The work is having a broad impact on the development of new chemical sensing technologies. The long-term goal of the work is to develop new SERS probes that will have greater commercialization opportunities, thus exploiting the ease, portability and relative cheapness of this type of sensor. It is having a further broad impact on the training of the next generation of scientists through the involvement of students at all levels, including high school, in the research investigations.This project is focused on understanding how molecules interact with gold and silver nanoparticles that support localized surface plasmons in SERS. Excitation of plasmons leads to strongly enhanced electromagnetic fields at the surface of the nanoparticles, and by placing molecules into these enhanced fields at the surface, optical signals from the molecules can be increased. In particular, Raman scattering, which provides a molecular 'fingerprint' and is useful for a variety of chemical sensing applications, is strongly enhanced by these nanoparticles. Most work on understanding plasmons and SERS has focused on how excitation fields are enhanced by the nanoparticles, but has neglected the role of emission by the molecule, despite its importance in generating the measured signals. This project probes the role of the molecule interacting with plasmonic nanoparticles, in order to better understand the factors that lead to the strongest possible signals from molecular targets of interest. To more precisely understand how molecules couple to plasmonic nanoparticles, both spectral and spatial overlap between the molecules and the nanoparticles are being investigated. Electrogenerated chemiluminescence is used to probe plasmon-coupled emission in the absence of plasmon-enhanced optical excitation. Super-resolution optical imaging is also being used to probe how the location of molecules on the surface of plasmonic nanoparticles influences how and where the emission is coupled into the far-field with sub-10 nm resolution. A wavelength-resolved version of super-resolution imaging is used to achieve simultaneous spectral and spatial resolution in order to show how different Raman modes are coupled into the far-field via wavelength-dependent plasmon coupling. These studies will provide an improved understanding of how accounting for the molecule can potentially redefine the conventional picture of a 'hot spot' region of strongly enhanced local electromagnetic fields.
有了这个奖项,化学测量和成像计划正在资助德克萨斯大学的凯瑟琳威利特的研究,以开发新技术来研究表面的详细结构。这些技术将改善各种化学传感器的功能,特别是基于表面增强拉曼散射(Sers)现象的类型。虽然Sers是一种非常有前途的传感技术,但它的商业应用受到了一些问题的限制,这些问题似乎是由于没有很好地表征或控制的不均匀表面造成的。目前的研究旨在通过研究当添加小颗粒的金和银时来自表面的信号来改善基于Sers技术的设备的功能。当分子接触到用这些小的金和银处理过的表面时,产生的Sers信号被增强,有时超过一百万倍。研究人员正在将各种分析技术应用于该系统,以了解这种增强是如何发生的,更重要的是,如何控制它。这项工作对新的化学传感技术的发展产生了广泛的影响。这项工作的长期目标是开发新的Sers探针,这些探针将具有更大的商业化机会,从而利用这种传感器的易用性,便携性和相对便宜。通过让包括高中生在内的各级学生参与研究调查,该项目对培养下一代科学家产生了更广泛的影响。该项目的重点是了解分子如何与支持Sers中局部表面等离子体的金和银纳米颗粒相互作用。等离子体激元的激发导致纳米颗粒表面处的强烈增强的电磁场,并且通过将分子置于表面处的这些增强的场中,可以增加来自分子的光学信号。特别是,拉曼散射,它提供了一个分子的“指纹”,是用于各种化学传感应用,是强烈增强这些纳米粒子。大多数关于理解等离子体激元和Sers的工作都集中在纳米粒子如何增强激发场,但忽略了分子发射的作用,尽管它在产生测量信号方面很重要。该项目探讨了分子与等离子体纳米粒子相互作用的作用,以更好地了解导致感兴趣的分子靶点产生最强信号的因素。为了更精确地理解分子如何耦合到等离子体纳米颗粒,正在研究分子和纳米颗粒之间的光谱和空间重叠。电致化学发光是用来探测等离子体激元耦合发射在等离子体增强的光激发的情况下。超分辨率光学成像也被用于探测等离子体纳米颗粒表面上分子的位置如何影响发射如何以及在何处以低于10 nm的分辨率耦合到远场。超分辨率成像的波长分辨版本被用来实现同时的光谱和空间分辨率,以显示不同的拉曼模式是如何耦合到远场通过波长相关的等离子体耦合。 这些研究将提供一个更好的理解如何占分子可以潜在地重新定义一个“热点”区域的强烈增强的局部电磁场的传统图片。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plasmon Heating Promotes Ligand Reorganization on Single Gold Nanorods
  • DOI:
    10.1021/acs.jpclett.9b00079
  • 发表时间:
    2019-03-21
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Cheng, Xiaoyu;Anthony, Taryn P.;Willets, Katherine A.
  • 通讯作者:
    Willets, Katherine A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Willets其他文献

Katherine Willets的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Willets', 18)}}的其他基金

Collaborative Research: Workshop: Challenges and Prospects for the Next 10 Years of Nanochemistry
合作研究:研讨会:纳米化学未来十年的挑战与前景
  • 批准号:
    2316672
  • 财政年份:
    2023
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
  • 批准号:
    2118389
  • 财政年份:
    2021
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
Synchronizing the chemical composition of silver nanoparticle surfaces
同步银纳米粒子表面的化学成分
  • 批准号:
    2003613
  • 财政年份:
    2020
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
OP: Super-resolution imaging of plasmon-molecule interactions
OP:等离子体分子相互作用的超分辨率成像
  • 批准号:
    1807269
  • 财政年份:
    2018
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Nanoscale Temperature Manipulation via Plasmonic Fano Interferences
DMREF:协作研究:通过等离子体 Fano 干扰进行纳米级温度操纵
  • 批准号:
    1728340
  • 财政年份:
    2017
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
Probing the location, number, and function of surface-bound antibodies on plasmonic nanoparticle biosensors using super-resolution fluorescence imaging
使用超分辨率荧光成像探测等离子体纳米颗粒生物传感器上表面结合抗体的位置、数量和功能
  • 批准号:
    1540926
  • 财政年份:
    2015
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
Probing the location, number, and function of surface-bound antibodies on plasmonic nanoparticle biosensors using super-resolution fluorescence imaging
使用超分辨率荧光成像探测等离子体纳米颗粒生物传感器上表面结合抗体的位置、数量和功能
  • 批准号:
    1402610
  • 财政年份:
    2014
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
Understanding plasmon-enhanced electromagnetic hot spots for surface-enhanced spectroscopies
了解表面增强光谱的等离子体增强电磁热点
  • 批准号:
    1409178
  • 财政年份:
    2014
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Continuing Grant

相似国自然基金

Tamm plasmon polaritons在金属与有限全介质光子晶体组成的复杂周期结构中传输特性的研究
  • 批准号:
    11004121
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
带电粒子与表面/界面电子气相互作用的理论研究
  • 批准号:
    11005058
  • 批准年份:
    2010
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
表面等离子共振增强硅基发光研究
  • 批准号:
    60606001
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Plasmon-Enhanced FerroElectric Discovery
等离激元增强铁电的发现
  • 批准号:
    EP/X034593/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Research Grant
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
  • 批准号:
    10680969
  • 财政年份:
    2023
  • 资助金额:
    $ 28.58万
  • 项目类别:
Plasmon-enhanced Expansion FluoroSpot for Imaging and Quantifying Single Cell Protein Secretion
用于单细胞蛋白质分泌成像和定量的等离激元增强扩增 FluoroSpot
  • 批准号:
    2316285
  • 财政年份:
    2023
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
Optimizing Enhanced Hammerhead Ribozymes for Retinal Nucleic Acid Therapeutics
优化用于视网膜核酸治疗的增强型锤头核酶
  • 批准号:
    10638529
  • 财政年份:
    2023
  • 资助金额:
    $ 28.58万
  • 项目类别:
Multi-Platform Homogeneous Multiplexed Autoantibody Assay Based on Liquid Micropiston-Enhanced Time-Resolved Forster Resonance Energy Transfer
基于液体微活塞增强时间分辨福斯特共振能量转移的多平台同质多重自身抗体测定
  • 批准号:
    10576777
  • 财政年份:
    2022
  • 资助金额:
    $ 28.58万
  • 项目类别:
Robust manufacturable antibacterial surfaces enabled by superhard plasmon-enhanced photocatalytic materials.
由超硬等离子体增强光催化材料实现的坚固的可制造抗菌表面。
  • 批准号:
    EP/W012197/1
  • 财政年份:
    2022
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Research Grant
Nanofabricated Model Systems for Investigations of Plasmon Enhanced Reactions
用于研究等离激元增强反应的纳米制造模型系统
  • 批准号:
    2150158
  • 财政年份:
    2022
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
Plasmon-enhanced Lateral Flow Assay for Multiplexed Detection of SARS-CoV-2 RNA and Antigens in Point-of-Care Settings
等离激元增强侧流分析用于在护理点环境中多重检测 SARS-CoV-2 RNA 和抗原
  • 批准号:
    2224610
  • 财政年份:
    2022
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Standard Grant
NanoMslide: plasmon-enhanced ptychographic phase microscopy
NanoMslide:等离子体增强叠层相位显微镜
  • 批准号:
    DP220103679
  • 财政年份:
    2022
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Discovery Projects
Robust manufacturable antimicrobial surfaces enabled by superhard plasmon-enhanced photocatalytic materials
由超硬等离子体增强光催化材料实现的坚固的可制造抗菌表面
  • 批准号:
    EP/W009501/1
  • 财政年份:
    2022
  • 资助金额:
    $ 28.58万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了