Modeling and Control of a NextGen Circulation Control Based Unmanned Aerial Vehicles
基于下一代循环控制的无人机的建模和控制
基本信息
- 批准号:1728454
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims at characterizing and accurately modeling the dynamics of fixed wing aerial vehicle with novel control concept, namely circulation control. Circulation control is the most effective active flow control method for lift enhancement purposes when compared to traditional control surfaces commonly used in aircraft. The circulation control wing (CCW) includes an air delivery system that "blows" air uniformly on the trailing edge of the wing through an air supply unit that is integrated with the main fuselage of the vehicle. While the CCW concept has huge benefits over the current state-of-the-art, there is a distinct need for improvements in the fundamental modeling and control aspects of such design. This project will lead to a comprehensive and verifiable theoretical and experimental methodology to develop the mathematical model and control strategies using an unmanned aerial vehicle (UAV) platform as the test-bed. The results from this project will lay a foundation for designing a full-scale unmanned circulation control aerial vehicle and contribute to a general understanding of implementation of circulation control in other applications. The fundamental understanding gained from this project will help design new aerial vehicles with the CCW concept that can deliver significantly enhanced aerodynamic efficiency, increased useful payload during cruise flight, delayed likelihood of stalling, and reduced runway requirements during take-off and landing. The project activities are also integrated with undergraduate and graduate educational experience.There exist several mathematical models for conventional UAVs, but there is no analytical or experimental model of the circulation control-based aerial vehicle designs. Also, the effect of circulation control on the aerodynamic characteristics of the new configuration aircraft are not known and, as a result, standard design techniques for control design cannot be applied to these new UAV designs. The research focus of this project is on providing a comprehensive methodology to derive a detailed mathematical model and equations of motion for the UAV with circulation control. The design methodology will be developed for various cases: CC-on, CC-off and CC-on-demand. The newly formulated models and derived controllers will be validated first through extensive simulation studies using X-Plane simulator environment and then through flight experiments using a retrofitted ReadyMadeRC Ananconda test platform. The outcome of the research is expected to be a verified and validated design. The project's methods will accurately characterize the effect of pitching moment, stability and control derivatives due to circulation control. A unique feature is the navigation controller derivation that accounts for changing blowing conditions depending on the on-going mission. Further, the circulation control system controller dynamically adjusts the blowing rate in accordance to set objectives and/or the required lift enhancement; this prevents operating the control system at full capacity at all times.
本计画的目的是以一种新颖的控制概念,即环量控制,来描述固定翼飞行器的动力学特性,并精确地建立其动力学模型。 与飞机常用的传统操纵面相比,环量控制是最有效的增升主动流动控制方法。环量控制翼(CCW)包括空气输送系统,该空气输送系统通过与飞行器的主机身集成的空气供应单元将空气均匀地“吹”在机翼的后缘上。尽管CCW概念相对于当前最先进的技术具有巨大的优势,但在这种设计的基本建模和控制方面存在明显的改进需求。该项目将导致一个全面的和可验证的理论和实验方法,以开发的数学模型和控制策略,使用无人机(UAV)平台作为试验台。本研究成果将为设计全尺寸无人环量控制飞行器奠定基础,并有助于对环量控制在其他应用中的实施有一个总体的了解。从该项目中获得的基本理解将有助于设计具有CCW概念的新型飞行器,这些飞行器可以显著提高空气动力学效率,增加巡航飞行期间的有效载荷,延迟失速的可能性,并减少起飞和着陆期间的跑道要求。该项目的活动也与本科生和研究生的教育经验相结合。有几个传统的无人机的数学模型,但没有分析或实验模型的循环控制为基础的飞行器的设计。此外,环量控制对新构型飞机的空气动力特性的影响还不清楚,因此,控制设计的标准设计技术不能应用于这些新的无人机设计。 本计画的研究重点在于提供一套完整的方法,以推导出具有环量控制的无人机的详细数学模型与运动方程式。设计方法将针对各种情况开发:CC开、CC关和CC按需。新制定的模型和衍生的控制器将首先通过使用X-Plane模拟器环境进行广泛的仿真研究进行验证,然后通过使用改装的ReadyMadeRC Ananconda测试平台进行飞行实验。研究的结果预计将是一个经过验证和确认的设计。该项目的方法将精确地描述环量控制引起的俯仰力矩、稳定性和控制导数的影响。一个独特的功能是导航控制器的推导,它可以根据正在进行的使命改变吹气条件。此外,循环控制系统控制器根据设定的目标和/或所需的升力增强来动态地调节吹送速率;这防止控制系统总是以全容量操作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimon Valavanis其他文献
On the Need for Special Issues – Revisited
- DOI:
10.1007/s10846-007-9176-3 - 发表时间:
2007-10-12 - 期刊:
- 影响因子:2.800
- 作者:
Kimon Valavanis - 通讯作者:
Kimon Valavanis
A Real-Time, Hierarchical, Sensor-Based Robotic System Architecture
- DOI:
10.1023/a:1007966024367 - 发表时间:
1998-01-01 - 期刊:
- 影响因子:2.800
- 作者:
Timothy Hebert;Kimon Valavanis;Ramesh Kolluru - 通讯作者:
Ramesh Kolluru
Erratum to: A Structured Approach for Modular Design in Robotics and Automation Environments
- DOI:
10.1007/s10846-013-9972-x - 发表时间:
2013-10-03 - 期刊:
- 影响因子:2.800
- 作者:
Ayssam Elkady;Jovin Joy;Tarek Sobh;Kimon Valavanis - 通讯作者:
Kimon Valavanis
Special Issue: Unmanned Aircraft Systems
- DOI:
10.1007/s10846-016-0386-4 - 发表时间:
2016-06-28 - 期刊:
- 影响因子:2.800
- 作者:
YangQuan Chen;Fulvia Quagliotti;Youmin Zhang;Kimon Valavanis - 通讯作者:
Kimon Valavanis
On Special Issues
- DOI:
10.1007/s10846-007-9154-9 - 发表时间:
2007-05-22 - 期刊:
- 影响因子:2.800
- 作者:
Kimon Valavanis - 通讯作者:
Kimon Valavanis
Kimon Valavanis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimon Valavanis', 18)}}的其他基金
CPS: TTP Option: Synergy: Collaborative Research: Dependable Multi-Robot Cooperative Tasking in Uncertain and Dynamic Environments
CPS:TTP 选项:协同:协作研究:不确定和动态环境中可靠的多机器人协作任务
- 批准号:
1446285 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
MRI Collaborative: Development of an Intelligent, Autonomous, Unmanned, Mobile Sensor
MRI 协作:开发智能、自主、无人、移动传感器
- 批准号:
1229236 - 财政年份:2012
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: I/UCRC: Safety Security Rescue Research Center (SSR-RC)
合作研究:I/UCRC:安全保障救援研究中心(SSR-RC)
- 批准号:
0856311 - 财政年份:2008
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Collaborative Research: I/UCRC: Safety Security Rescue Research Center (SSR-RC)
合作研究:I/UCRC:安全保障救援研究中心(SSR-RC)
- 批准号:
0443924 - 财政年份:2004
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Modeling, Design and Prototyping of a Multi-Degree-of- Freedom Robotic Gripper System for Limp Material Manipulation
用于柔软材料操纵的多自由度机器人夹具系统的建模、设计和原型制作
- 批准号:
9701533 - 财政年份:1997
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
International Advanced Robotics Programme (IARP) Workshop on Autonomous Underwater Vehicles for Shallow Waters and Coastal Environments, February 17-19, 1998, Lafayette, LA
国际先进机器人计划 (IARP) 浅水和沿海环境自主水下航行器研讨会,1998 年 2 月 17-19 日,路易斯安那州拉斐特
- 批准号:
9712565 - 财政年份:1997
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Object Identification, Classification and Avoidance in 3-D Underwater Automated Surveillance
3D 水下自动监视中的物体识别、分类和规避
- 批准号:
9506771 - 财政年份:1995
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
International Program Development In Undersea Robotics & Intelligent Controls: (A Joint U.S./Portugal Effort), January, 1995, Lisbon, Portugal
海底机器人国际项目开发
- 批准号:
9415748 - 财政年份:1994
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
CAREER: Elucidating Biogenic Control of Heterogenous Ice Nucleation
职业:阐明异质冰核的生物控制
- 批准号:
2336558 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2422698 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant