Highly Parallel Three-Dimensional Microfluidic Systems for Manufacturing Catalytic Nanoparticles
用于制造催化纳米粒子的高度并行三维微流体系统
基本信息
- 批准号:1728649
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The unique biological, optical, and chemical properties of metal nanoparticles have driven several decades of research into their many potential applications. If these applications are to be realized at a level that will make a significant societal impact, cost-effective techniques for producing industrially relevant quantities of nanoparticles must be developed. Today, chemical manufacturing techniques for high quality nanoparticle fabrication remain at small production scales, with a cost that reflects the limited throughput and labor intensity of a by-hand process. This is because only small-scale chemical reactions can achieve uniform mixing conditions and uniform temperatures throughout the reaction vessel, which are essential conditions for producing uniform, high-quality nanoparticles. Standard, large-volume industrial chemical reactors lack uniform mixing and temperature distribution tend to produce low-quality particles and are therefore an inappropriate route to the scale-up of high-quality nanoparticle manufacturing, for example, for catalysis. This award investigates continuous-flow chemical micron scale reactors as a means to maintain the small-scale conditions necessary to make high-quality nanoparticles while allowing for continuous processing that can be automated and operated around the clock. Further, to scale these microreactors to industrially relevant conditions, this research investigates massive parallelization, i.e., the controlled operation of many microreactors at once to produce large quantities of high-quality nanoparticles. This research effort is coordinated with an outreach program that integrates community college students into research, and makes science and engineering careers accessible to these students, especially women and minority students.High quality nanoparticles for commercial purposes are still prepared at the lab scale, essentially by hand. The limit to scale-up is the fact that in solution-phase chemical techniques, the size and monodispersity of the resulting nanoparticles are extremely sensitive to the reaction temperature and reagent mixing conditions. It is impossible to maintain the necessary uniformity in current industrial-scale reactors even with stirring. Microfluidic reactors, however, have inherently good thermal uniformity and droplet microfluidic systems allow for rapid mixing and homogenization. This research approach relies on ionic liquid (IL)-based nanoparticle synthesis in microfluidic reactors. In these reactors, droplets of IL are separated in a fluorocarbon oil-based carrier stream. The microfluidic system developed in this research will operate at remarkably high colloid concentrations, nearly 50-100 mg nanoparticles/mL reaction solvent, compared to nearly 2 mg/mL for traditional solution phase approaches. In the nanomanufacturing system studied here, a microreactor system is scaled to sixteen parallel channels. The funded work is a science-based investigation of the key system parameters, such as, process monitoring and feedback control, that must be addressed to scale such a parallel system to an arbitrarily large capacity.
金属纳米颗粒独特的生物学、光学和化学性质推动了数十年的研究,使其成为许多潜在的应用。如果这些应用要在一个将产生重大社会影响的水平上实现,则必须开发用于生产工业相关数量的纳米颗粒的成本效益技术。今天,用于高质量纳米颗粒制造的化学制造技术仍然处于小生产规模,其成本反映了手工工艺的有限产量和劳动强度。这是因为只有小规模的化学反应才能在整个反应容器中实现均匀的混合条件和均匀的温度,这是生产均匀、高质量纳米颗粒的必要条件。标准的大容量工业化学反应器缺乏均匀的混合和温度分布,往往会产生低质量的颗粒,因此是扩大高质量纳米颗粒制造(例如用于催化)的不适当途径。该奖项研究了连续流动化学微米级反应器,作为维持制造高质量纳米颗粒所需的小规模条件的一种手段,同时允许自动化和全天候操作的连续处理。此外,为了将这些微反应器扩展到工业相关条件,本研究研究了大规模并行化,即, 同时控制许多微反应器的操作,以生产大量高质量的纳米颗粒。这项研究工作与一项外展计划相协调,该计划将社区大学的学生纳入研究,并使这些学生,特别是女性和少数民族学生能够获得科学和工程职业。用于商业目的的高质量纳米颗粒仍然在实验室规模制备,基本上是手工制作。规模扩大的限制是这样一个事实,即在溶液相化学技术中,所得纳米颗粒的尺寸和单分散性对反应温度和试剂混合条件极其敏感。在目前的工业规模反应器中,即使有搅拌也不可能保持必要的均匀性。然而,微流体反应器具有固有的良好的热均匀性,并且液滴微流体系统允许快速混合和均质化。这种研究方法依赖于在微流控反应器中基于离子液体(IL)的纳米颗粒合成。在这些反应器中,IL的液滴在氟碳油基载体流中分离。本研究中开发的微流体系统将在非常高的胶体浓度下运行,接近50-100 mg纳米颗粒/mL反应溶剂,而传统的溶液相方法接近2 mg/mL。在这里研究的纳米制造系统中,微反应器系统被缩放到16个并行通道。资助的工作是对关键系统参数的科学调查,例如过程监测和反馈控制,必须解决这些问题,以将这种并行系统扩展到任意大的容量。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-optimizing parallel millifluidic reactor for scaling nanoparticle synthesis
- DOI:10.1039/d0cc00064g
- 发表时间:2020-04-04
- 期刊:
- 影响因子:4.9
- 作者:Wang, Lu;Karadaghi, Lanja R.;Malmstadt, Noah
- 通讯作者:Malmstadt, Noah
Scale-up modeling for manufacturing nanoparticles using microfluidic T-junction
- DOI:10.1080/24725854.2018.1443529
- 发表时间:2018-01-01
- 期刊:
- 影响因子:2.6
- 作者:Duanmu, Yanqing;Riche, Carson T.;Huang, Qiang
- 通讯作者:Huang, Qiang
Techno-Economic Analysis of Recycled Ionic Liquid Solvent Used in a Model Colloidal Platinum Nanoparticle Synthesis
- DOI:10.1021/acssuschemeng.0c06993
- 发表时间:2021-01-11
- 期刊:
- 影响因子:8.4
- 作者:Karadaghi, Lanja R.;Malmstadt, Noah;Brutchey, Richard L.
- 通讯作者:Brutchey, Richard L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noah Malmstadt其他文献
Dewetting-Induced Formation of Bacterial Model Membranes using Submicron Shell Double Emulsions
- DOI:
10.1016/j.bpj.2018.11.1243 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Sepehr Maktabi;Noah Malmstadt;Jeffrey Schertzer;Paul Chiarot - 通讯作者:
Paul Chiarot
Imaging Techniques for Quantifying Passive Diffusion Across Lipid Bilayer Membranes
- DOI:
10.1016/j.bpj.2011.11.3866 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Noah Malmstadt;Su Li;Peichi C. Hu;Kristina Runas - 通讯作者:
Kristina Runas
Fabricating a New Stabilized Lipid-Based Platform for Handling and Presenting GPCRs
- DOI:
10.1016/j.bpj.2009.12.3309 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Yasaman Dayani;Noah Malmstadt - 通讯作者:
Noah Malmstadt
Lipid bilayer membrane interactions with nonspherical nanoparticles
- DOI:
10.1016/j.bpj.2023.11.700 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Ricki Chairil;Noah Malmstadt - 通讯作者:
Noah Malmstadt
Microfluidic Measurement of Carbon Dioxide Permeability across Lipid Bilayers
- DOI:
10.1016/j.bpj.2019.11.1357 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Matthew C. Blosser;Majed S. Madani;Justin So;Noah Malmstadt - 通讯作者:
Noah Malmstadt
Noah Malmstadt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noah Malmstadt', 18)}}的其他基金
Understanding How Integral Membrane Proteins Influence the Continuum Mechanics of Cell Membranes.
了解完整膜蛋白如何影响细胞膜的连续体力学。
- 批准号:
1915017 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Sustainable Scale-Up of Nanoparticle Manufacturing Using Microreactors
使用微反应器可持续扩大纳米颗粒制造规模
- 批准号:
1436872 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Uncovering Fundamental Relationships Between Molecular Structure and Passive Cell Membrane Transport
揭示分子结构与被动细胞膜运输之间的基本关系
- 批准号:
1067021 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Cholesterol Flip-Flop Dynamics and Nanomechanical Response of Deformed Biomembranes: Experiments and Petascale Simulations
变形生物膜的胆固醇触发器动力学和纳米力学响应:实验和千万亿次模拟
- 批准号:
1068212 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Engineered Microfluidic Mixing for Green Nanocrystal Manufacturing
用于绿色纳米晶体制造的工程微流体混合
- 批准号:
0926969 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
- 批准号:11805229
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of parallel solvers with spectral-like resolution for three-dimensional incompressible turbulence
开发具有类似光谱分辨率的三维不可压缩湍流并行求解器
- 批准号:
21K11927 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an assistive instrument for upper lib with three-linkage type parallel mechanism
三连杆式并联机构上肢辅助器械的研制
- 批准号:
17K01559 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: A New Three-Dimensional Parallel Immersed Boundary Method with Application to Hemodialysis
合作研究:一种新的三维平行浸入边界方法在血液透析中的应用
- 批准号:
1522537 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: A New Three-Dimensional Parallel Immersed Boundary Method with Application to Hemodialysis
合作研究:一种新的三维平行浸入边界方法在血液透析中的应用
- 批准号:
1522554 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Three Dimensional Holography for Parallel Multi-target Optogenetic Circuit Manipulation
用于并行多目标光遗传学电路操纵的三维全息术
- 批准号:
8826957 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Three Dimensional Holography for Parallel Multi-target Optogenetic Circuit Manipulation
用于并行多目标光遗传学电路操纵的三维全息术
- 批准号:
8934226 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Three Dimensional Holography for Parallel Multi-target Optogenetic Circuit Manipulation
用于并行多目标光遗传学电路操纵的三维全息术
- 批准号:
9084944 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Three Dimensional Holography for Parallel Multi-target Optogenetic Circuit Manipulation
用于并行多目标光遗传学电路操纵的三维全息术
- 批准号:
9130301 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
The role of "genomic islands" in the parallel speciation of three-spine stickleback
“基因组岛”在三刺刺鱼平行物种形成中的作用
- 批准号:
410262-2011 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The role of "genomic islands" in the parallel speciation of three-spine stickleback
“基因组岛”在三刺刺鱼平行物种形成中的作用
- 批准号:
410262-2011 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




