DMREF/Collaborative Research: A Data-Centric Approach for Accelerating the Design of Future Nanostructured Polymers and Composites Systems
DMREF/协作研究:加速未来纳米结构聚合物和复合材料系统设计的以数据为中心的方法
基本信息
- 批准号:1729452
- 负责人:
- 金额:$ 79.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polymer nanocomposites are highly tailorable materials that, with careful design, can achieve superior properties not available with existing materials. Most polymer nanocomposites are developed using an Edisonian (trial and error) process, severely limiting the capacity to optimize performance and increasing time to implementation. The solution is a data-driven design approach. As an example, this Designing Materials to Revolutionize and Engineer our Future (DMREF) project will design new material systems that simultaneously optimize for dielectric response and mechanical durability, a combination currently not achievable but necessary for high voltage electrical transmission and conversion. These new materials will have a significant economic impact on society because they will enable higher efficiency generation and transmission of electricity. More broadly, this new design approach will result in new nanostructured polymer material systems that will impact a wide range of industries such as energy, consumer electronics, and manufacturing. To ensure broad access to this work, the data, tools and models developed will be integrated and shared through an open data resource, NanoMine. The team will interact with the scientific community to create an integrated virtual organization of designers and researchers to test and improve the models. Educational components will reach undergraduate and graduate communities via interdisciplinary cluster programs at the two institutions, and provide undergraduate research opportunities and web based instructional modules and workshops.The research is based on a central research hypothesis that using a data-driven approach, grounded in physics, allows integration of models that bridge length scales from angstroms to millimeters to predict dielectric and mechanical properties to enable the design and optimization of new materials. Data, algorithms and models will be integrated into the new and growing nanocomposite data resource NanoMine to address challenges in data-driven material design. This research will result in advancements in three areas. First, integrating a broad set of literature data and targeted experiments with multiscale methods will enable the development of interphase models to predict local polymer properties near interfaces considered critical for modeling polymer composites. Second, a hybrid approach utilizing machine-learning to bridge length scales between physics-based modeling domains will be used to create meaningful multiscale processing-structure-property relationship work flows. And, third, a Bayesian inference approach will utilize the knowledge contained in a dataset as a prior probability distribution and guide 'on-demand' computer simulations and physical experiments to accelerate the search of optimal material designs. Case studies will demonstrate the data-centric approach to accelerate the development of next-generation nanostructured polymers with predictable and optimized combinations of properties.
聚合物纳米复合材料是高度可定制的材料,经过精心设计,可以获得现有材料所不具备的优异性能。大多数聚合物纳米复合材料是使用爱迪生(试错法)过程开发的,这严重限制了优化性能的能力,并增加了实施时间。解决方案是数据驱动的设计方法。举个例子,设计材料革新和设计我们的未来(DMREF)项目将设计同时优化介电响应和机械耐用性的新材料系统,这一组合目前无法实现,但对于高压电力传输和转换是必要的。这些新材料将对社会产生重大的经济影响,因为它们将使发电和输电效率更高。更广泛地说,这种新的设计方法将产生新的纳米结构聚合物材料系统,将影响广泛的行业,如能源、消费电子和制造业。为确保广泛利用这项工作,将通过一个开放的数据资源--Nanomine整合和共享所开发的数据、工具和模型。该团队将与科学界互动,创建一个由设计师和研究人员组成的综合虚拟组织,以测试和改进模型。教育部分将通过这两个机构的跨学科集群计划到达本科生和研究生社区,并提供本科生研究机会和基于网络的教学模块和工作室。这项研究基于一个核心研究假设,即使用基于物理的数据驱动方法,允许集成从埃到毫米的长度尺度的模型,以预测介电和机械性能,从而实现新材料的设计和优化。数据、算法和模型将被整合到新的和不断增长的纳米复合数据资源Nanomine中,以应对数据驱动材料设计方面的挑战。这项研究将在三个方面取得进展。首先,将广泛的文献数据和多尺度方法的有针对性的实验相结合,将使界面模型的开发能够预测界面附近的局部聚合物性质,这些界面被认为是模拟聚合物复合材料的关键。其次,将使用一种混合方法,利用机器学习在基于物理的建模领域之间架起长度尺度的桥梁,以创建有意义的多尺度处理-结构-特性关系工作流。第三,贝叶斯推理方法将利用数据集中包含的知识作为先验概率分布,并指导按需的计算机模拟和物理实验,以加速搜索最佳材料设计。案例研究将展示以数据为中心的方法,以加速开发具有可预测和优化的性能组合的下一代纳米结构聚合物。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First-principles identification of localized trap states in polymer nanocomposite interfaces
聚合物纳米复合材料界面中局域陷阱态的第一性原理识别
- DOI:10.1557/jmr.2020.18
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Shandilya, Abhishek;Schadler, Linda S.;Sundararaman, Ravishankar
- 通讯作者:Sundararaman, Ravishankar
Dielectric properties of polymer nanocomposite interphases from electrostatic force microscopy using machine learning
- DOI:10.1016/j.matchar.2021.110909
- 发表时间:2021-01-30
- 期刊:
- 影响因子:4.7
- 作者:Gupta, Praveen;Schadler, Linda S.;Sundararaman, Ravishankar
- 通讯作者:Sundararaman, Ravishankar
Rethinking interphase representations for modeling viscoelastic properties for polymer nanocomposites
- DOI:10.1016/j.mtla.2019.100277
- 发表时间:2019-06-01
- 期刊:
- 影响因子:3.4
- 作者:Li, Xiaolin;Zhang, Min;Brinson, L. Catherine
- 通讯作者:Brinson, L. Catherine
Bayesian Optimization for Materials Design with Mixed Quantitative and Qualitative Variables
- DOI:10.1038/s41598-020-60652-9
- 发表时间:2020-03-18
- 期刊:
- 影响因子:4.6
- 作者:Zhang, Yichi;Apley, Daniel W.;Chen, Wei
- 通讯作者:Chen, Wei
Polymer Nanocomposite Data: Curation, Frameworks, Access, and Potential for Discovery and Design
- DOI:10.1021/acsmacrolett.0c00264
- 发表时间:2020-08-18
- 期刊:
- 影响因子:7.015
- 作者:Brinson, L. Catherine;Deagen, Michael;Hu, Bingyin
- 通讯作者:Hu, Bingyin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravishankar Sundararaman其他文献
Materials for interconnects
互连材料
- DOI:
10.1557/s43577-021-00192-3 - 发表时间:
2021-10-28 - 期刊:
- 影响因子:4.900
- 作者:
Daniel Gall;Judy J. Cha;Zhihong Chen;Hyeuk-Jin Han;Christopher Hinkle;Joshua A. Robinson;Ravishankar Sundararaman;Riccardo Torsi - 通讯作者:
Riccardo Torsi
Ravishankar Sundararaman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravishankar Sundararaman', 18)}}的其他基金
EAGER: CRYO: Refrigeration across temperature scales with electrically-tunable spin-orbit materials
EAGER:CRYO:利用电可调自旋轨道材料实现跨温标制冷
- 批准号:
2233111 - 财政年份:2022
- 资助金额:
$ 79.06万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 79.06万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 79.06万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 79.06万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 79.06万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 79.06万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 79.06万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 79.06万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 79.06万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 79.06万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 79.06万 - 项目类别:
Standard Grant