EAGER: CRYO: Refrigeration across temperature scales with electrically-tunable spin-orbit materials

EAGER:CRYO:利用电可调自旋轨道材料实现跨温标制冷

基本信息

  • 批准号:
    2233111
  • 负责人:
  • 金额:
    $ 29.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Non-technical summaryQuantum computing and communication technologies, which will become increasingly critical for competitiveness and security in the next phase of the information age, require ultralow temperatures that are hundreds to thousands of times smaller than room temperature. Currently the predominant approach to reach such temperatures relies on repeatedly mixing and separating two isotopes of helium, He-3 and He-4, in a dilution refrigerator. However, helium in general, and He-3 in particular, are rare and increasingly expensive. This poses a severe challenge to the widespread adoption of quantum technologies. With this high risk/high reward project, supported by the Division of Materials Research, researchers at the Rensselaer Polytechnic Institute investigate a new approach for achieving ultralow temperatures without relying on rare elements. Specifically, they leverage the unique interactions of the spin of electrons in a class of materials called Rashba materials with electric fields. Preliminary simulations show that switching a voltage applied to these materials on and off in a specific pattern and direction may allow reaching low temperatures efficiently, making these potentially promising materials to compete with dilution refrigerators. In addition to enabling the widespread adoption of quantum technologies, the success of this new approach to reach very low temperatures could make a wide range of low-temperature phenomena, such as superconductors, more scientifically and technologically accessible. To educate the next generation of STEM workforce, the researchers integrate the underlying theory and experimental demonstrations of ultralow temperature refrigeration into undergraduate and graduate curricula as well as high-school outreach programs. This helps introduce future scientists and engineers to the technological challenges on the path to the age of quantum information.Technical summaryWith support from the Division of Materials Research, the researchers leverage Rashba spin-orbit coupling in materials as a new platform for enabling new approaches to reach ultralow temperatures down to 0.01 K, breaking the current dependency on the extremely rare He-3 isotope required by dilution refrigerators. They study new thermodynamic cycles that take advantage of the dependence of the electronic entropy on electric fields, due to the change of the spin-orbit splitting with electric field strength in Rashba materials. In particular, they investigate the possibility for refrigeration by adiabatic electrification of Rashba materials and determine if this can provide sufficient cooling power that matches or even exceeds that of typical dilution refrigerators. Research objectives include exploring a wide class of Rashba materials with different spin-orbit coupling strengths, synthesize structures capable of electric field cycling in these materials and quantify the field- and temperature-dependent thermodynamic parameters of these materials relevant for refrigeration. If successful, this approach may be extensible to a wide temperature range due to the broad range of Rashba energy splits, potentially opening up a pathway to cool from liquid nitrogen to millikelvin temperatures in a single material platform.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算和通信技术对于信息时代下一阶段的竞争力和安全性将变得越来越重要,需要比室温小数百至数千倍的超低温。目前,达到这种温度的主要方法依赖于在稀释制冷机中反复混合和分离氦的两种同位素He-3和He-4。然而,一般来说,氦,特别是He-3,是罕见的,而且越来越昂贵。这对量子技术的广泛采用构成了严峻挑战。通过这个高风险/高回报的项目,由材料研究部支持,伦斯勒理工学院的研究人员研究了一种实现超低温而不依赖稀有元素的新方法。具体来说,他们利用了一类称为Rashba材料的材料中电子自旋与电场的独特相互作用。初步模拟表明,以特定的模式和方向打开和关闭施加在这些材料上的电压可以有效地达到低温,使这些潜在的有前途的材料与稀释制冷机竞争。除了能够广泛采用量子技术外,这种达到极低温度的新方法的成功还可以使超导体等各种低温现象在科学和技术上更容易获得。为了教育下一代STEM劳动力,研究人员将超低温制冷的基本理论和实验演示整合到本科和研究生课程以及高中外展计划中。这有助于向未来的科学家和工程师介绍通往量子信息时代的技术挑战。技术摘要在材料研究部门的支持下,研究人员利用材料中的Rashba自旋轨道耦合作为一个新平台,使新方法能够达到低至0. 01 K的超低温,打破了稀释制冷机目前对极其稀有的He-3同位素的依赖。他们研究新的热力学循环,利用电子熵对电场的依赖性,这是由于Rashba材料中自旋轨道分裂随电场强度的变化。特别是,他们研究了通过Rashba材料的绝热电气化进行制冷的可能性,并确定这是否可以提供足够的冷却能力,与典型的稀释制冷机相匹配甚至超过。研究目标包括探索具有不同自旋轨道耦合强度的Rashba材料,合成能够在这些材料中进行电场循环的结构,并量化这些材料与制冷相关的场和温度相关的热力学参数。如果成功的话,由于Rashba能量分裂的范围很广,这种方法可能会扩展到很宽的温度范围,从而可能开辟一条在单一材料平台中从液氮冷却到毫开尔文温度的途径。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ravishankar Sundararaman其他文献

Materials for interconnects
互连材料
  • DOI:
    10.1557/s43577-021-00192-3
  • 发表时间:
    2021-10-28
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Daniel Gall;Judy J. Cha;Zhihong Chen;Hyeuk-Jin Han;Christopher Hinkle;Joshua A. Robinson;Ravishankar Sundararaman;Riccardo Torsi
  • 通讯作者:
    Riccardo Torsi

Ravishankar Sundararaman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ravishankar Sundararaman', 18)}}的其他基金

DMREF/Collaborative Research: A Data-Centric Approach for Accelerating the Design of Future Nanostructured Polymers and Composites Systems
DMREF/协作研究:加速未来纳米结构聚合物和复合材料系统设计的以数据为中心的方法
  • 批准号:
    1729452
  • 财政年份:
    2017
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant

相似国自然基金

棉花纤维素合酶CesA的Cryo-EM结构和功能解析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006232/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006151/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Research Grant
Intelligent cryo-electron microscopy of G protein-coupled receptors
G 蛋白偶联受体的智能冷冻电子显微镜
  • 批准号:
    23K23818
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Atomistic reconstruction of large biomolecular systems from low-resolution cryo-electron microscopy data - RECKON
利用低分辨率冷冻电子显微镜数据原子重建大型生物分子系统 - RECKON
  • 批准号:
    EP/Y010221/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Fellowship
MFB: Evaluating and Advancing Cryo-EM for RNA Conformational Ensembles
MFB:评估和推进 RNA 构象整体的冷冻电镜
  • 批准号:
    2330652
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Standard Grant
Cryo-ETで捉える細胞膜局在性ヒトV-ATPase
Cryo-ET 捕获细胞膜定位的人 V-ATP 酶
  • 批准号:
    24KJ0159
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
  • 批准号:
    BB/Y513878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Research Grant
950 MHz NMR spectrometer with cryo probe
带低温探头的 950 MHz NMR 波谱仪
  • 批准号:
    518589454
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Major Research Instrumentation
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
  • 批准号:
    515081333
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Major Research Instrumentation
Cryo-electron microscopy determination of G protein-coupled receptor states
冷冻电镜测定 G 蛋白偶联受体状态
  • 批准号:
    DE230101681
  • 财政年份:
    2023
  • 资助金额:
    $ 29.72万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了