DMREF: Collaborative Research: Accelerating Thermoelectric Materials Discovery via Dopability Predictions
DMREF:协作研究:通过可掺杂性预测加速热电材料的发现
基本信息
- 批准号:1729594
- 负责人:
- 金额:$ 95.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: Thermoelectric devices, which transform heat flow into electrical power and vice versa, have the potential to revolutionize how society produces electricity and cooling. However, thermoelectric materials suffer from poor power conversion efficiency and the search continues for new materials with enhanced performance. In this project, advances in computation and machine learning are leveraged to accelerate this search for advanced thermoelectric materials. These efforts build upon the prior NSF DMREF research of some of team members on predicting a material's potential for thermoelectric performance. High throughput screening focused on identifying semiconductors with desirable electronic and vibrational properties. However, these efforts did not include a strong focus on the role of intrinsic defect or the potential for dopability. In the next stage of this research, these critical components will be pursued through a mixture of high throughput theory, experimental validation, and machine learning. Together, these efforts will yield accurate prediction of the thermoelectric potential for thousands of semiconductors and the realization of new materials for solid state power generation. Beyond thermoelectric materials, these efforts to establish a dopability recommendation engine will be critical in the development of next generation microelectronic and optoelectronic materials such as transparent conductors and photovoltaic absorbers. Technical Description: The project's ultimate objective is to build a robust and accurate dopability recommendation engine to overcome the dopability bottleneck in thermoelectric materials discovery. The recommendation engine will use materials informatics to enable high-throughput predictions of dopability, relying only on quantities that are inexpensive to calculate, experimental measurements, and known structural/chemical features as inputs. It will thus allow dopability screening of thousands of compounds. First, an accurate training set will be built for the recommendation engine containing native defect formation enthalpies and structural/chemical descriptors from a diverse array of thermoelectric-relevant compounds. Whereas prior dopant studies focused on single compounds, a new, automated calculation infrastructure will be leveraged that allows the rapid creation of an extensive training set, initially containing approximately 30 compounds but growing to over 100 during the project. Experimental charge transport and local dopant structure measurements will validate the training set. Second, the prediction engine will be trained on the data to extract patterns and correlations, and ultimately identify robust descriptors of dopability. Initially, the engine will predict if `killer' defects limit the available dopant range. The engine will ultimately grow to suggest specific extrinsic dopants for compounds that pass this initial screening. Together, this combination of accurate predictions of intrinsic transport properties (prior DMREF) and dopability (proposed DMREF) is expected to accelerate the discovery process for thermoelectric materials.
非技术描述:热电装置,将热流转化为电能,反之亦然,有可能彻底改变社会生产电力和冷却的方式。然而,热电材料的功率转换效率较差,因此对性能增强的新材料的研究仍在继续。在这个项目中,计算和机器学习的进步被用来加速对先进热电材料的研究。这些努力建立在先前NSF DMREF研究的基础上,一些团队成员预测了材料的热电性能潜力。高通量筛选侧重于识别具有理想电子和振动特性的半导体。然而,这些努力并没有包括对内在缺陷的作用或可移植性的潜在关注。在这项研究的下一阶段,这些关键组成部分将通过高通量理论、实验验证和机器学习的混合来追求。总之,这些努力将为数千种半导体提供准确的热电势预测,并实现固态发电的新材料。除了热电材料之外,这些建立可操作性推荐引擎的努力将对下一代微电子和光电子材料(如透明导体和光伏吸收器)的发展至关重要。技术描述:该项目的最终目标是建立一个强大而准确的可dopability推荐引擎,以克服热电材料发现中的可dopability瓶颈。推荐引擎将使用材料信息学来实现高通量的可操作性预测,仅依赖于计算成本低廉的数量、实验测量和已知的结构/化学特征作为输入。因此,它将允许对数千种化合物进行可行性筛选。首先,将为推荐引擎构建一个精确的训练集,其中包含来自各种热电相关化合物的天然缺陷形成焓和结构/化学描述符。鉴于之前的掺杂剂研究主要集中在单一化合物上,一种新的自动化计算基础设施将被利用,允许快速创建广泛的训练集,最初包含大约30种化合物,但在项目期间增长到100多种。实验电荷输运和局部掺杂结构测量将验证训练集的有效性。其次,预测引擎将在数据上进行训练,以提取模式和相关性,并最终识别可操作性的鲁棒描述符。最初,发动机将预测“致命”缺陷是否限制了可用的掺杂范围。该引擎最终将为通过初步筛选的化合物提供特定的外部掺杂剂。总之,这种准确预测本征输运性质(先前的DMREF)和可dopability(提议的DMREF)的结合有望加速热电材料的发现过程。
项目成果
期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultralow Thermal Conductivity in Diamond-Like Semiconductors: Selective Scattering of Phonons from Antisite Defects
类金刚石半导体中的超低导热率:反位缺陷选择性散射声子
- DOI:10.1021/acs.chemmater.8b00890
- 发表时间:2018
- 期刊:
- 影响因子:8.6
- 作者:Ortiz, Brenden R.;Peng, Wanyue;Gomes, Lídia C.;Gorai, Prashun;Zhu, Taishan;Smiadak, David M.;Snyder, G. Jeffrey;Stevanović, Vladan;Ertekin, Elif;Zevalkink, Alexandra
- 通讯作者:Zevalkink, Alexandra
The Thermoelectric Properties of Bismuth Telluride
- DOI:10.1002/aelm.201800904
- 发表时间:2019-06-01
- 期刊:
- 影响因子:6.2
- 作者:Witting, Ian T.;Chasapis, Thomas C.;Snyder, G. Jeffrey
- 通讯作者:Snyder, G. Jeffrey
Extrinsic doping of Hg 2 GeTe 4 in the face of defect compensation and phase competition
Hg 2 GeTe 4 的外在掺杂面临缺陷补偿和相位竞争
- DOI:10.1039/d3tc00209h
- 发表时间:2023
- 期刊:
- 影响因子:6.4
- 作者:Porter, Claire E.;Qu, Jiaxing;Cielsielski, Kamil;Ertekin, Elif;Toberer, Eric S.
- 通讯作者:Toberer, Eric S.
Empirical modeling of dopability in diamond-like semiconductors
- DOI:10.1038/s41524-018-0123-6
- 发表时间:2018-12
- 期刊:
- 影响因子:9.7
- 作者:Samuel A. Miller;M. Dylla;Shashwat Anand;Kiarash Gordiz;G. J. Snyder;E. Toberer
- 通讯作者:Samuel A. Miller;M. Dylla;Shashwat Anand;Kiarash Gordiz;G. J. Snyder;E. Toberer
The importance of phase equilibrium for doping efficiency: iodine doped PbTe
- DOI:10.1039/c9mh00294d
- 发表时间:2019-08-01
- 期刊:
- 影响因子:13.3
- 作者:Male, James;Agne, Matthias T.;Snyder, G. Jeffrey
- 通讯作者:Snyder, G. Jeffrey
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Toberer其他文献
β-Phase Yb5Sb3Hx: Magnetic and Thermoelectric Properties Traversing from an Electride to a Semiconductor
β相 Yb5Sb3Hx:从电子化合物到半导体的磁和热电特性
- DOI:
10.1021/acs.inorgchem.4c00254 - 发表时间:
2024 - 期刊:
- 影响因子:4.6
- 作者:
Ashlee K. Hauble;Tanner Q. Kimberly;Kamil M Ciesielski;Nicholas Mrachek;Maxwell G Wright;Valentin Taufour;Ping Yu;Eric Toberer;S. Kauzlarich - 通讯作者:
S. Kauzlarich
Multiple defect states engineering towards high thermoelectric performance in GeTe-based materials
- DOI:
10.1016/j.cej.2024.156250 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Taras Parashchuk;Bartlomiej Wiendlocha;Oleksandr Cherniushok;Kacper Pryga;Kamil Ciesielski;Eric Toberer;Krzysztof T. Wojciechowski - 通讯作者:
Krzysztof T. Wojciechowski
Eric Toberer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Toberer', 18)}}的其他基金
Discovery of Compounds containing Frustrated Vanadium Nets with Emergent Electronic Phenomena
发现含有受阻钒网的化合物并产生电子现象
- 批准号:
2350519 - 财政年份:2024
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
- 批准号:
2334261 - 财政年份:2023
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
REU Site: Undergraduate Research Integrating Computation and Experiment to Create Revolutionary Materials
REU 网站:本科生研究结合计算和实验来创造革命性材料
- 批准号:
2244331 - 财政年份:2023
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
HDR Institute: Institute for Data Driven Dynamical Design
HDR 研究所:数据驱动动态设计研究所
- 批准号:
2118201 - 财政年份:2021
- 资助金额:
$ 95.9万 - 项目类别:
Cooperative Agreement
REU Site: Undergraduate Research Integrating Computation and Experiment to Create Revolutionary Materials
REU 网站:本科生研究结合计算和实验来创造革命性材料
- 批准号:
1950924 - 财政年份:2020
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
Collaborative Research: Accelerating the Discovery of Electronic Materials through Human-Computer Active Search
协作研究:通过人机主动搜索加速电子材料的发现
- 批准号:
1940199 - 财政年份:2019
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
CAREER: Control of Charge Carrier Dynamics in Complex Thermoelectric Semiconductors
职业:复杂热电半导体中电荷载流子动力学的控制
- 批准号:
1555340 - 财政年份:2016
- 资助金额:
$ 95.9万 - 项目类别:
Continuing Grant
DMREF/Collaborative Research: Computationally Driven Targeting of Advanced Thermoelectric Materials
DMREF/合作研究:计算驱动的先进热电材料靶向
- 批准号:
1334713 - 财政年份:2013
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 95.9万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 95.9万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 95.9万 - 项目类别:
Standard Grant














{{item.name}}会员




