CompCog: Collaborative Research: Learning Visuospatial Reasoning Skills from Experience

CompCog:协作研究:从经验中学习视觉空间推理技能

基本信息

  • 批准号:
    1730044
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

This project uses methods from artificial intelligence (AI) to better understand how people learn visuospatial reasoning skills like mental rotation, which are a critical ingredient in the development of strong math and science abilities. In particular, this project proposes a new approach to quantify the learning value contained in different visual experiences, using wearable cameras combined with a new AI system that learns visuospatial reasoning skills from video examples. Results from this project will not only advance the state of the art in AI but also will enable researchers to measure how valuable different real-world visual experiences are in helping people to learn visuospatial reasoning skills. For example, certain types of object play activities might be particularly valuable for helping a child to learn certain visuospatial reasoning skills. Ultimately, this new measurement approach could be used to identify early signs of visuospatial reasoning difficulties in children and could also help in the design of new visuospatial training interventions to boost children's early math and science development.The core scientific question that this project aims to answer is: How are visuospatial reasoning skills learned from first-person visual experiences? This question will be answered through computational experiments with a new AI system---the Mental Imagery Engine (MIME)---that learns visuospatial reasoning skills, like mental rotation, from video examples. Training data will include first-person, wearable-camera videos from two different settings that are both important for human learning: unstructured object manipulation by infants and visuospatial training interventions designed for children. Results from experiments with the MIME AI system will advance the state of the art in both AI and the science of human learning by helping to explain how visuospatial reasoning skills can be learned from visual experiences, and, in particular, how having different kinds of visual experiences can affect the quality of a person's learning outcomes in different ways.
该项目使用人工智能(AI)的方法来更好地了解人们如何学习视觉空间推理技能,如心理旋转,这是发展强大的数学和科学能力的关键因素。 特别是,该项目提出了一种新的方法来量化不同视觉体验中包含的学习价值,使用可穿戴相机结合新的AI系统,从视频示例中学习视觉空间推理技能。 该项目的结果不仅将推动人工智能的发展,还将使研究人员能够衡量不同的现实世界视觉体验在帮助人们学习视觉空间推理技能方面的价值。 例如,某些类型的物体游戏活动可能对帮助儿童学习某些视觉空间推理技能特别有价值。 最终,这种新的测量方法可以用来识别儿童视觉空间推理困难的早期迹象,也可以帮助设计新的视觉空间训练干预措施,以促进儿童的早期数学和科学发展。该项目旨在回答的核心科学问题是:视觉空间推理技能是如何从第一人称视觉体验中学习的? 这个问题将通过一个新的人工智能系统的计算实验来回答--心理图像引擎(MIME)--它从视频示例中学习视觉空间推理技能,如心理旋转。 训练数据将包括来自两种不同环境的第一人称可穿戴摄像头视频,这两种环境对人类学习都很重要:婴儿的非结构化物体操作和为儿童设计的视觉空间训练干预。 MIME人工智能系统的实验结果将通过帮助解释如何从视觉体验中学习视觉空间推理技能,特别是不同类型的视觉体验如何以不同的方式影响一个人的学习成果的质量,来推动人工智能和人类学习科学的发展。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thinking in PolAR pictures: Using rotation-friendly mental images to solve Leiter-R Form Completion
用 PolAR 图片思考:使用旋转友好的心理图像来解决 Leiter-R 表格完成问题
AI, visual imagery, and a case study on the challenges posed by human intelligence tests
Nonverbal task learning
非语言任务学习
AI and Cognitive Testing: A New Conceptual Framework and Roadmap
人工智能和认知测试:新的概念框架和路线图
Not quite any way you slice it: How different analogical constructions affect Raven's Matrices performance
不完全是你切片的方式:不同的类比结构如何影响 Raven 矩阵的性能
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maithilee Kunda其他文献

Maithilee Kunda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maithilee Kunda', 18)}}的其他基金

NSF2026: EAGER: Collaborative Research: Enhancing Employment for Neurodiverse Individuals through Next-Generation, AI-Enabled Assessments of Visuospatial Cognition
NSF2026:EAGER:协作研究:通过下一代人工智能支持的视觉空间认知评估,增强神经多样性个体的就业
  • 批准号:
    2034013
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF INCLUDES: South East Alliance for Persons with Disabilities in STEM (SEAPD-STEM)
合作研究:NSF 包括:东南 STEM 残疾人联盟 (SEAPD-STEM)
  • 批准号:
    1649285
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
  • 批准号:
    2235362
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
  • 批准号:
    2235363
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Adversarial Collaborative Research on Intuitive Physical Reasoning
协作研究:CompCog:直观物理推理的对抗性协作研究
  • 批准号:
    2121009
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Psychological, Computational, and Neural Adequacy in a Deep Learning Model of Human Speech Recognition
合作研究:CompCog:人类语音识别深度学习模型中的心理、计算和神经充分性
  • 批准号:
    2043903
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Psychological, Computational, and Neural Adequacy in a Deep Learning Model of Human Speech Recognition
合作研究:CompCog:人类语音识别深度学习模型中的心理、计算和神经充分性
  • 批准号:
    2043950
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Adversarial Collaborative Research on Intuitive Physical Reasoning
协作研究:CompCog:直观物理推理的对抗性协作研究
  • 批准号:
    2121102
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CompCog: Collaborative Research: Testing quantitative predictions of sentence processing theories with a large-scale eye-tracking database
CompCog:协作研究:使用大型眼动追踪数据库测试句子处理理论的定量预测
  • 批准号:
    2020914
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CompCog: Collaborative Research: Testing quantitative predictions of sentence processing theories with a large-scale eye-tracking database
CompCog:协作研究:使用大型眼动追踪数据库测试句子处理理论的定量预测
  • 批准号:
    2020945
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了