CI-SUSTAIN: Stan for the Long Run

CI-SUSTAIN:长远发展

基本信息

  • 批准号:
    1730414
  • 负责人:
  • 金额:
    $ 98.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Stan is a software package that transforms scientific discovery by allowing scientists to quickly and easily explore, evaluate, and refine rich scientific hypotheses tailored to their particular research question and data collection mechanism. For computational reasons, analyses of data (big or otherwise) have tended to be simple and focused more on the difficulties of manipulating the data than on realistic scientific models. The next generation of Bayesian inference can take scientists beyond this impasse, via sophisticated models that can adjust for differences between sample and population, and between treatment and control groups, to join the benefits of large datasets with the rigor and power of statistical adjustment. Stan further helps educate the next generation of data scientists, with a natural, easy-to-learn and portable modeling language, coupled with robust, practical inference tools. The specific goal of this project is to solidify the Stan code base to enable application, maintenance, and development of the Stan software. Stan is being applied in many corners of the physical, biological, and social sciences, hundreds of at scales ranging from the neutrinos to supernovas, from cellular biology to population ecology, and from human reaction times to social network evolution. In this project the PI aims to document and ruggedize the core infrastructure of Stan to enable it to be used by a wider audience of scientists, to be maintained by a wider group of software developers, and to be extensible to allow for the future development of new scientific applications and statistical algorithms.Technically, this project is devoted to thoroughly documenting for users and developers, testing at the unit, integration, and functional levels, and inevitably refactoring the application programming interfaces (API) of Stan's components. These components include (1) an automatically differentiable mathematics, statistics, and matrix algebra library, (2) an imperative probabilistic programming language for expressing statistical data/parameter structures and scientific/measurement models, (3) core inference algorithms for providing exact and approximate full Bayesian parameter estimation and predictive inference, (4) a service layer of high-level commands, I/O callbacks, and interrupts, and (5) interfaces integrating Stan's probability modeling, analysis and visualization capabilities into existing data science workflows in languages including R, Python, Julia, Stata, MATLAB, Mathematica and the command-line for cloud and cluster computing. The main goal of the refactoring is to achieve enough modularity in system components and documentation that developers will be able to concentrate on a single component, such as a new function, algorithm, or visualization, as well as to allow Stan to be used as a research tool for algorithm development. These goals complement the goals of documenting the language and interfaces in order to promote rigorous statistical methodology and reproducible computational workflows for applied scientists.
STAN是一个软件包,通过允许科学家快速、轻松地探索、评估和完善针对他们特定的研究问题和数据收集机制的丰富的科学假设,来转变科学发现。由于计算方面的原因,对数据的分析(无论是大的还是其他的)往往都很简单,更多地关注操纵数据的困难,而不是现实的科学模型。下一代贝叶斯推理可以带领科学家走出这一僵局,通过复杂的模型来调整样本和总体之间的差异,以及治疗组和对照组之间的差异,将大数据集的好处与统计调整的精确度和能力结合起来。斯坦通过一种自然、易于学习和可移植的建模语言,加上强大、实用的推理工具,进一步帮助培养下一代数据科学家。该项目的具体目标是巩固STAN代码库,以实现STAN软件的应用、维护和开发。斯坦被应用于物理、生物和社会科学的许多角落,从中微子到超新星,从细胞生物学到种群生态学,从人类反应时间到社会网络进化,数以百计的人都在使用斯坦。在这个项目中,PI旨在记录和加固STAN的核心基础设施,使其能够被更广泛的科学家使用,由更广泛的软件开发人员维护,并具有可扩展性,以允许未来开发新的科学应用程序和统计算法。在技术上,该项目致力于为用户和开发人员彻底记录文档,在单元、集成和功能级别进行测试,并不可避免地重构STAN组件的应用程序编程接口(API)。这些组件包括(1)自动可微的数学、统计和矩阵代数库,(2)用于表示统计数据/参数结构和科学/测量模型的命令性概率编程语言,(3)用于提供准确和近似的完整贝叶斯参数估计和预测推理的核心推理算法,(4)高级命令、I/O回调和中断的服务层,以及(5)将Stan的概率建模、分析和可视化能力集成到现有数据科学工作流中的接口,其语言包括R、Python、Julia、Stata、matlab和用于云和集群计算的命令行。重构的主要目标是在系统组件和文档中实现足够的模块化,以便开发人员能够专注于单个组件,例如新函数、算法或可视化,并允许将Stan用作算法开发的研究工具。这些目标补充了记录语言和界面的目标,以便为应用科学家促进严格的统计方法和可重复使用的计算工作流程。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Stacking to Average Bayesian Predictive Distributions (with Discussion)
  • DOI:
    10.1214/17-ba1091
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Yao, Yuling;Vehtari, Aki;Tonellato, Stefano
  • 通讯作者:
    Tonellato, Stefano
R-squared for Bayesian Regression Models
  • DOI:
    10.1080/00031305.2018.1549100
  • 发表时间:
    2019-07-03
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Gelman, Andrew;Goodrich, Ben;Vehtari, Aki
  • 通讯作者:
    Vehtari, Aki
Visualization in Bayesian workflow
BAYESIAN AGGREGATION OF AVERAGE DATA: AN APPLICATION IN DRUG DEVELOPMENT
  • DOI:
    10.1214/17-aoas1122
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Weber, Sebastian;Gelman, Andrew;Racine-Poon, Amy
  • 通讯作者:
    Racine-Poon, Amy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Gelman其他文献

C3(H<sub>2</sub>O) – Generation, quantitation, and marker of human disease
  • DOI:
    10.1016/j.molimm.2018.06.058
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michelle Elvington;M. Kathryn Liszewski;Hrishikesh Kulkarni;Andrew Gelman;Alfred Kim;John Atkinson
  • 通讯作者:
    John Atkinson
A default prior distribution for logistic and other regression models ∗
逻辑和其他回归模型的默认先验分布 *
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Gelman;Aleks Jakulin;M. G. Pittau;Yu
  • 通讯作者:
    Yu
An improved BISG for inferring race from surname and geolocation
一种改进的 BISG,用于根据姓氏和地理位置推断种族
  • DOI:
    10.48550/arxiv.2310.15097
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Greengard;Andrew Gelman
  • 通讯作者:
    Andrew Gelman
Community prevalence of SARS-CoV-2 in England during April to September 2020: Results from the ONS Coronavirus Infection Survey
2020 年 4 月至 9 月英格兰 SARS-CoV-2 社区流行情况:ONS 冠状病毒感染调查结果
  • DOI:
    10.1101/2020.10.26.20219428
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Pouwels;T. House;E. Pritchard;J. Robotham;Paul J. Birrell;Andrew Gelman;K. Vihta;N. Bowers;Ian Boreham;Heledd Thomas;James W Lewis;Iain Bell;J. Bell;J. Newton;J. Farrar;I. Diamond;P. Benton;A. Walker
  • 通讯作者:
    A. Walker
Ethics and Statistics: It's Too Hard to Publish Criticisms and Obtain Data for Republication
伦理与统计学:发表批评和获取重发表数据太难了
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Gelman
  • 通讯作者:
    Andrew Gelman

Andrew Gelman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Gelman', 18)}}的其他基金

Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Standard Grant
RAPID: Flexible, Efficient, and Available Bayesian Computation for Epidemic Models
RAPID:灵活、高效、可用的流行病模型贝叶斯计算
  • 批准号:
    2055251
  • 财政年份:
    2020
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Scalable Systems for Probabilistic Programming
协作研究:PPoSS:规划:概率编程的可扩展系统
  • 批准号:
    2029022
  • 财政年份:
    2020
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Standard Grant
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
  • 批准号:
    1926578
  • 财政年份:
    2019
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Multilevel Regression and Poststratification: A Unified Framework for Survey Weighted Inference
协作研究:多级回归和后分层:调查加权推理的统一框架
  • 批准号:
    1534414
  • 财政年份:
    2015
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Standard Grant
CI-ADDO-NEW: Stan, Scalable Software for Bayesian Modeling
CI-ADDO-NEW:Stan,用于贝叶斯建模的可扩展软件
  • 批准号:
    1205516
  • 财政年份:
    2012
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Standard Grant
CMG: Reconstructing Climate from Tree Ring Data
CMG:从树木年轮数据重建气候
  • 批准号:
    0934516
  • 财政年份:
    2009
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Standard Grant
Design and Analysis of "How many X's do you know" surveys for the study of polarization in social networks
用于研究社交网络极化的“你知道多少个 X”调查的设计和分析
  • 批准号:
    0532231
  • 财政年份:
    2005
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Standard Grant
Multilevel Modeling for the Study of Public Opinion and Voting
用于民意和投票研究的多层次建模
  • 批准号:
    0318115
  • 财政年份:
    2003
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Estimating Congressional District-Level Opinions from National Surveys using a Bayesian Hierarchical Logistic Regression Model
博士论文研究:使用贝叶斯分层逻辑回归模型从全国调查中估计国会选区级意见
  • 批准号:
    0241709
  • 财政年份:
    2003
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Standard Grant

相似海外基金

Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
  • 批准号:
    DP240102658
  • 财政年份:
    2024
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Discovery Projects
Utilizing Wrap Around Mentorship and Virtual Reality to Prepare and Sustain STEM Teachers in Rural High-Need Schools
利用环绕式指导和虚拟现实来培养和维持农村高需求学校的 STEM 教师
  • 批准号:
    2344941
  • 财政年份:
    2024
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Continuing Grant
Duties to change desires that sustain oppressive structures
有责任改变维持压迫性结构的欲望
  • 批准号:
    2884765
  • 财政年份:
    2023
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Studentship
Sustain approach to Biomedical Sci CDT
生物医学科学 CDT 的持续方法
  • 批准号:
    2882319
  • 财政年份:
    2023
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Studentship
Sustain approach to Biomedical Sci CDT
生物医学科学 CDT 的持续方法
  • 批准号:
    2882320
  • 财政年份:
    2023
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Studentship
Sustain approach to Biomedical Sci CDT
生物医学科学 CDT 的持续方法
  • 批准号:
    2882326
  • 财政年份:
    2023
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Studentship
Supporting Unhealthy Substance use care Through a whole person Approach and user centered INtegration into primary care (SUSTAIN)
支持不健康药物使用护理 通过全人方法和以用户为中心 融入初级护理(持续)
  • 批准号:
    10827292
  • 财政年份:
    2023
  • 资助金额:
    $ 98.39万
  • 项目类别:
Sustain approach to Biomedical Sci CDT
生物医学科学 CDT 的持续方法
  • 批准号:
    2882322
  • 财政年份:
    2023
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Studentship
Sustain approach to Biomedical Sci CDT
生物医学科学 CDT 的持续方法
  • 批准号:
    2882336
  • 财政年份:
    2023
  • 资助金额:
    $ 98.39万
  • 项目类别:
    Studentship
UNC-Greensboro U-RISE: Engage, Sustain, and Prepare Future PhD Biomedical Scientists
北卡罗来纳大学格林斯伯勒分校 U-RISE:吸引、维持和培养未来的博士生物医学科学家
  • 批准号:
    10629651
  • 财政年份:
    2023
  • 资助金额:
    $ 98.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了