CMG: Reconstructing Climate from Tree Ring Data
CMG:从树木年轮数据重建气候
基本信息
- 批准号:0934516
- 负责人:
- 金额:$ 59.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project seeks better ways to use tree ring data to infer changes in climate. Annual growth rings in trees have long been used as a primary means of reconstructing climatic conditions over the past two millennia, extending our knowledge of climate beyond the period of the instrumented record. However, tree ring growth depends on factors other than climate, and non-climatic influences must be removed when tree ring data is used for climate reconstruction. Traditional methods for filtering out non-climatic influences can be too extreme, removing some of the climate signal as well as the non-climate noise. The research in this project will improve upon traditional filtering methods using Bayesian hierarchical modeling, a technique in which statistical models will be constructed to specify how tree rings growth is expected to vary in response to both climatic and non-climatic (e.g. tree age) factors. The models will then be combined with tree ring data to produce both climate reconstructions and estimates of the level of uncertainty present in the reconstructions. Additional research will consider the extent to which tree ring-based reconstructions might benefit from changes in the way tree ring data is collected. In particular, the potential benefit from taking additional cores from each tree will be evaluated.Tree ring-based climate reconstructions are an important source of information on the range of natural climate fluctuations, and thus they play an important role in assessing the extent to which recent climate changes are outside the envelope of pre-industrial climate variability. The improvements in tree ring analysis resulting from this research will thus have a broad impact on our understanding of both natural and human-induced climate variation and change. In addition, tree rings are an important source of information regarding the range of past variability in water resources, which is of interest to water managers in the semi-arid southwestern states. Beyond these benefits, the research will develop statistical techniques which will be applicable to a range of scientific problems in which the behavior of a complex system must be inferred from proxy data.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目寻求更好的方法来使用树木年轮数据来推断气候变化。 树木的年轮长期以来一直被用作重建过去两千年气候条件的主要手段,将我们对气候的了解扩展到仪器记录的时期之外。 然而,树木年轮的生长取决于气候以外的因素,当树木年轮数据用于气候重建时,必须去除非气候的影响。 传统的过滤非气候影响的方法可能过于极端,会去除一些气候信号和非气候噪声。 该项目的研究将使用贝叶斯分层模型改进传统的过滤方法,该技术将构建统计模型,以指定树木年轮生长如何响应气候和非气候(例如树木年龄)因素。 这些模型将与树木年轮数据相结合,以产生气候重建和重建中存在的不确定性水平的估计。 更多的研究将考虑基于树轮的重建在多大程度上可能受益于树轮数据收集方式的变化。 特别是,采取额外的核心,从每棵树的潜在效益将进行评估。树木年轮为基础的气候重建是一个重要的信息来源的范围内的自然气候波动,因此,他们发挥了重要作用,在评估的程度,最近的气候变化是在工业化前的气候变率的信封。 因此,这项研究对树木年轮分析的改进将对我们理解自然和人为引起的气候变化和变化产生广泛的影响。 此外,树木年轮是有关水资源过去变化范围的重要信息来源,这对半干旱西南各州的水资源管理人员很有意义。 除了这些好处之外,该研究还将开发适用于一系列科学问题的统计技术,其中复杂系统的行为必须从代理数据中推断出来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Gelman其他文献
C3(H<sub>2</sub>O) – Generation, quantitation, and marker of human disease
- DOI:
10.1016/j.molimm.2018.06.058 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:
- 作者:
Michelle Elvington;M. Kathryn Liszewski;Hrishikesh Kulkarni;Andrew Gelman;Alfred Kim;John Atkinson - 通讯作者:
John Atkinson
A default prior distribution for logistic and other regression models ∗
逻辑和其他回归模型的默认先验分布 *
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Andrew Gelman;Aleks Jakulin;M. G. Pittau;Yu - 通讯作者:
Yu
An improved BISG for inferring race from surname and geolocation
一种改进的 BISG,用于根据姓氏和地理位置推断种族
- DOI:
10.48550/arxiv.2310.15097 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
P. Greengard;Andrew Gelman - 通讯作者:
Andrew Gelman
Community prevalence of SARS-CoV-2 in England during April to September 2020: Results from the ONS Coronavirus Infection Survey
2020 年 4 月至 9 月英格兰 SARS-CoV-2 社区流行情况:ONS 冠状病毒感染调查结果
- DOI:
10.1101/2020.10.26.20219428 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Pouwels;T. House;E. Pritchard;J. Robotham;Paul J. Birrell;Andrew Gelman;K. Vihta;N. Bowers;Ian Boreham;Heledd Thomas;James W Lewis;Iain Bell;J. Bell;J. Newton;J. Farrar;I. Diamond;P. Benton;A. Walker - 通讯作者:
A. Walker
Ethics and Statistics: It's Too Hard to Publish Criticisms and Obtain Data for Republication
伦理与统计学:发表批评和获取重发表数据太难了
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Andrew Gelman - 通讯作者:
Andrew Gelman
Andrew Gelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Gelman', 18)}}的其他基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
RAPID: Flexible, Efficient, and Available Bayesian Computation for Epidemic Models
RAPID:灵活、高效、可用的流行病模型贝叶斯计算
- 批准号:
2055251 - 财政年份:2020
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Scalable Systems for Probabilistic Programming
协作研究:PPoSS:规划:概率编程的可扩展系统
- 批准号:
2029022 - 财政年份:2020
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
- 批准号:
1926578 - 财政年份:2019
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
CI-SUSTAIN: Stan for the Long Run
CI-SUSTAIN:长远发展
- 批准号:
1730414 - 财政年份:2017
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Collaborative Research: Multilevel Regression and Poststratification: A Unified Framework for Survey Weighted Inference
协作研究:多级回归和后分层:调查加权推理的统一框架
- 批准号:
1534414 - 财政年份:2015
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
CI-ADDO-NEW: Stan, Scalable Software for Bayesian Modeling
CI-ADDO-NEW:Stan,用于贝叶斯建模的可扩展软件
- 批准号:
1205516 - 财政年份:2012
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Design and Analysis of "How many X's do you know" surveys for the study of polarization in social networks
用于研究社交网络极化的“你知道多少个 X”调查的设计和分析
- 批准号:
0532231 - 财政年份:2005
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Multilevel Modeling for the Study of Public Opinion and Voting
用于民意和投票研究的多层次建模
- 批准号:
0318115 - 财政年份:2003
- 资助金额:
$ 59.81万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Estimating Congressional District-Level Opinions from National Surveys using a Bayesian Hierarchical Logistic Regression Model
博士论文研究:使用贝叶斯分层逻辑回归模型从全国调查中估计国会选区级意见
- 批准号:
0241709 - 财政年份:2003
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Reconstructing Holocene glacier lengths through time to address climate model-data disagreements
合作研究:随着时间的推移重建全新世冰川长度以解决气候模型数据分歧
- 批准号:
2303294 - 财政年份:2023
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Reconstructing Indian Ocean climate variability during the Pliocene
重建上新世印度洋气候变化
- 批准号:
2843422 - 财政年份:2023
- 资助金额:
$ 59.81万 - 项目类别:
Studentship
Collaborative Research: Reconstructing Holocene glacier lengths through time to address climate model-data disagreements
合作研究:随着时间的推移重建全新世冰川长度以解决气候模型数据分歧
- 批准号:
2303293 - 财政年份:2023
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Collaborative Research: Reconstructing Climate Linkages Across the Tropical Oceans Over the Last Millennium
合作研究:重建过去千年热带海洋的气候联系
- 批准号:
2202793 - 财政年份:2022
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Forests in flux: reconstructing ecotone shifts to improve understanding of climate--vegetation feedbacks
不断变化的森林:重建生态交错带变化以提高对气候-植被反馈的理解
- 批准号:
RGPIN-2019-06221 - 财政年份:2022
- 资助金额:
$ 59.81万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Reconstructing Climate Linkages Across the Tropical Oceans Over the Last Millennium
合作研究:重建过去千年热带海洋的气候联系
- 批准号:
2202794 - 财政年份:2022
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
P2C2: Collaborative Research: The Role of Seasonality in Abrupt Climate Change - a Test by Reconstructing Fluctuations of a Late-Glacial Ice Mass in Eastern North America
P2C2:合作研究:季节性在气候突变中的作用——通过重建北美东部晚冰期冰块波动进行的测试
- 批准号:
2202791 - 财政年份:2022
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
P2C2: Collaborative Research: The Role of Seasonality in Abrupt Climate Change - a Test by Reconstructing Fluctuations of a Late-Glacial Ice Mass in Eastern North America
P2C2:合作研究:季节性在气候突变中的作用——通过重建北美东部晚冰期冰块波动进行的测试
- 批准号:
2202798 - 财政年份:2022
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Reconstructing Late Pleistocene ecology, environment and climate using bulk and compound specific isotope measurements of megafauna
利用巨型动物群的大量和复合特定同位素测量重建晚更新世生态、环境和气候
- 批准号:
RGPIN-2021-03678 - 财政年份:2022
- 资助金额:
$ 59.81万 - 项目类别:
Discovery Grants Program - Individual
P2C2: Collaborative Research: The Role of Seasonality in Abrupt Climate Change - a Test by Reconstructing Fluctuations of a Late-Glacial Ice Mass in Eastern North America
P2C2:合作研究:季节性在气候突变中的作用——通过重建北美东部晚冰期冰块波动进行的测试
- 批准号:
2202762 - 财政年份:2022
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant














{{item.name}}会员




