CMG: Reconstructing Climate from Tree Ring Data
CMG:从树木年轮数据重建气候
基本信息
- 批准号:0934516
- 负责人:
- 金额:$ 59.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project seeks better ways to use tree ring data to infer changes in climate. Annual growth rings in trees have long been used as a primary means of reconstructing climatic conditions over the past two millennia, extending our knowledge of climate beyond the period of the instrumented record. However, tree ring growth depends on factors other than climate, and non-climatic influences must be removed when tree ring data is used for climate reconstruction. Traditional methods for filtering out non-climatic influences can be too extreme, removing some of the climate signal as well as the non-climate noise. The research in this project will improve upon traditional filtering methods using Bayesian hierarchical modeling, a technique in which statistical models will be constructed to specify how tree rings growth is expected to vary in response to both climatic and non-climatic (e.g. tree age) factors. The models will then be combined with tree ring data to produce both climate reconstructions and estimates of the level of uncertainty present in the reconstructions. Additional research will consider the extent to which tree ring-based reconstructions might benefit from changes in the way tree ring data is collected. In particular, the potential benefit from taking additional cores from each tree will be evaluated.Tree ring-based climate reconstructions are an important source of information on the range of natural climate fluctuations, and thus they play an important role in assessing the extent to which recent climate changes are outside the envelope of pre-industrial climate variability. The improvements in tree ring analysis resulting from this research will thus have a broad impact on our understanding of both natural and human-induced climate variation and change. In addition, tree rings are an important source of information regarding the range of past variability in water resources, which is of interest to water managers in the semi-arid southwestern states. Beyond these benefits, the research will develop statistical techniques which will be applicable to a range of scientific problems in which the behavior of a complex system must be inferred from proxy data.
该奖项是根据2009年的《美国回收与再投资法》(公法111-5)资助的。本项目寻求更好的方法来使用树环数据来推断气候变化。 在过去的两千年中,长期以来,树木中的年度生长环一直用作重建气候条件的主要手段,从而将我们对气候的知识扩展到了仪器记录的时期。 但是,树环的生长取决于气候以外的其他因素,当将树环数据用于气候重建时,必须消除非气候影响。 过滤非气候影响的传统方法可能太极端了,消除了某些气候信号以及非气候噪声。 该项目中的研究将改善使用贝叶斯分层建模的传统过滤方法,该技术将构建统计模型,以指定树环的增长如何因气候和非气候和非气候和非气候(例如树时代)因素而变化。 然后,模型将与树环数据结合使用,以产生气候重建和重建中存在的不确定性水平的估计。 其他研究将考虑基于树环的重建可能受益于收集树环数据的变化的程度。 特别是,将评估从每棵树上取其他核心的潜在益处。基于树环的气候重建是自然气候波动范围的重要信息来源,因此它们在评估最近气候变化的程度中起着重要作用,在多大程度上超出了工业前工业气候变化的范围。 因此,这项研究产生的树环分析的改进将对我们对自然和人类引起的气候变化和变化的理解产生广泛的影响。 此外,树环是有关水资源过去变异范围的重要信息来源,这对于半干旱西南州的水管理者感兴趣。 除这些好处外,研究还将开发统计技术,这些技术将适用于一系列科学问题,其中必须从代理数据中推断出复杂系统的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Gelman其他文献
Forming Voting Blocs and Coalitions as a Prisoner's Dilemma: A Possible Theoretical Explanation for Political Instability
- DOI:
10.2202/1538-0645.1185 - 发表时间:
2003-10 - 期刊:
- 影响因子:0
- 作者:
Andrew Gelman - 通讯作者:
Andrew Gelman
Community prevalence of SARS-CoV-2 in England during April to September 2020: Results from the ONS Coronavirus Infection Survey
2020 年 4 月至 9 月英格兰 SARS-CoV-2 社区流行情况:ONS 冠状病毒感染调查结果
- DOI:
10.1101/2020.10.26.20219428 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Pouwels;T. House;E. Pritchard;J. Robotham;Paul J. Birrell;Andrew Gelman;K. Vihta;N. Bowers;Ian Boreham;Heledd Thomas;James W Lewis;Iain Bell;J. Bell;J. Newton;J. Farrar;I. Diamond;P. Benton;A. Walker - 通讯作者:
A. Walker
Ethics and Statistics: It's Too Hard to Publish Criticisms and Obtain Data for Republication
伦理与统计学:发表批评和获取重发表数据太难了
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Andrew Gelman - 通讯作者:
Andrew Gelman
An improved BISG for inferring race from surname and geolocation
一种改进的 BISG,用于根据姓氏和地理位置推断种族
- DOI:
10.48550/arxiv.2310.15097 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
P. Greengard;Andrew Gelman - 通讯作者:
Andrew Gelman
A default prior distribution for logistic and other regression models ∗
逻辑和其他回归模型的默认先验分布 *
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Andrew Gelman;Aleks Jakulin;M. G. Pittau;Yu - 通讯作者:
Yu
Andrew Gelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Gelman', 18)}}的其他基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
RAPID: Flexible, Efficient, and Available Bayesian Computation for Epidemic Models
RAPID:灵活、高效、可用的流行病模型贝叶斯计算
- 批准号:
2055251 - 财政年份:2020
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Scalable Systems for Probabilistic Programming
协作研究:PPoSS:规划:概率编程的可扩展系统
- 批准号:
2029022 - 财政年份:2020
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
- 批准号:
1926578 - 财政年份:2019
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
CI-SUSTAIN: Stan for the Long Run
CI-SUSTAIN:长远发展
- 批准号:
1730414 - 财政年份:2017
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Collaborative Research: Multilevel Regression and Poststratification: A Unified Framework for Survey Weighted Inference
协作研究:多级回归和后分层:调查加权推理的统一框架
- 批准号:
1534414 - 财政年份:2015
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
CI-ADDO-NEW: Stan, Scalable Software for Bayesian Modeling
CI-ADDO-NEW:Stan,用于贝叶斯建模的可扩展软件
- 批准号:
1205516 - 财政年份:2012
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Design and Analysis of "How many X's do you know" surveys for the study of polarization in social networks
用于研究社交网络极化的“你知道多少个 X”调查的设计和分析
- 批准号:
0532231 - 财政年份:2005
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Multilevel Modeling for the Study of Public Opinion and Voting
用于民意和投票研究的多层次建模
- 批准号:
0318115 - 财政年份:2003
- 资助金额:
$ 59.81万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Estimating Congressional District-Level Opinions from National Surveys using a Bayesian Hierarchical Logistic Regression Model
博士论文研究:使用贝叶斯分层逻辑回归模型从全国调查中估计国会选区级意见
- 批准号:
0241709 - 财政年份:2003
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
相似国自然基金
阿尔泰山友谊峰南坡地区第四纪冰川演化序列与古气候重建
- 批准号:42371011
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
中亚干旱区末次冰期气候变化定量重建及其驱动机制研究
- 批准号:42372219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
华北南部早三叠世内陆湖盆古水文重建及其古气候意义
- 批准号:42302031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中更新世气候转型期海洋碳循环:重建和机制
- 批准号:42330403
- 批准年份:2023
- 资助金额:230.00 万元
- 项目类别:重点项目
中吉乌铁路沿线气候变化和极端气候事件的树轮多参数重建及未来预估
- 批准号:42375054
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Reconstructing Holocene glacier lengths through time to address climate model-data disagreements
合作研究:随着时间的推移重建全新世冰川长度以解决气候模型数据分歧
- 批准号:
2303294 - 财政年份:2023
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Reconstructing Indian Ocean climate variability during the Pliocene
重建上新世印度洋气候变化
- 批准号:
2843422 - 财政年份:2023
- 资助金额:
$ 59.81万 - 项目类别:
Studentship
Collaborative Research: Reconstructing Holocene glacier lengths through time to address climate model-data disagreements
合作研究:随着时间的推移重建全新世冰川长度以解决气候模型数据分歧
- 批准号:
2303293 - 财政年份:2023
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Collaborative Research: Reconstructing Climate Linkages Across the Tropical Oceans Over the Last Millennium
合作研究:重建过去千年热带海洋的气候联系
- 批准号:
2202793 - 财政年份:2022
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant
Collaborative Research: Reconstructing Climate Linkages Across the Tropical Oceans Over the Last Millennium
合作研究:重建过去千年热带海洋的气候联系
- 批准号:
2202794 - 财政年份:2022
- 资助金额:
$ 59.81万 - 项目类别:
Standard Grant