Collaborative Research: PPoSS: Planning: Scalable Systems for Probabilistic Programming
协作研究:PPoSS:规划:概率编程的可扩展系统
基本信息
- 批准号:2029022
- 负责人:
- 金额:$ 11.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistical methods have had great successes for exploring data, making predictions, and solving problems in a wide range of problems. But in the world of big data, methods need to be scalable, so as to handle larger problems while modeling the real-world problems of messy and nonrepresentative data. The project’s novelties are developments in software and hardware facilitating full-stack integration of Bayesian inference to allow complex and realistic models to be fit to large datasets. The project's impacts are in many areas of pure and applied science, including fields as diverse as epidemiology, genetics, and political science, which are challenging because they are dense in parameters rather than in data. Examples include models for disease progression and drug development, decision making under uncertainty, and trends in public opinion.The project is exploring probabilistic programming, including hardware, high-performance computing, programming languages and compilers, and algorithms. The ultimate goal is to develop the tools necessary for an efficient, and scalable Bayesian workflow, building on the existing success of the open-source probabilistic programming language Stan. The team of researchers on this project are working on explorations of algorithms (model validation for approximate inference), programming languages and compilers (automating of approximate algorithms and advanced performance profiling), systems (probabilistic programming for streaming data), high-performance computing (parallel processing and GPUs), and hardware (exploring domain-specific hardware for Bayesian computation).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
统计方法在探索数据、进行预测和解决各种问题方面取得了巨大的成功。但在大数据世界中,方法需要具有可扩展性,以便在处理更大的问题的同时对混乱和非代表性数据的现实问题进行建模。 该项目的新颖之处是软件和硬件的开发,促进贝叶斯推理的全栈集成,以允许复杂而现实的模型适合大型数据集。 该项目的影响涉及许多纯科学和应用科学领域,包括流行病学、遗传学和政治学等不同领域,这些领域具有挑战性,因为它们的参数密集而不是数据密集。 例如疾病进展和药物开发的模型,不确定性下的决策以及公众舆论的趋势。该项目正在探索概率编程,包括硬件,高性能计算,编程语言和编译器以及算法。 最终目标是开发一个有效的,可扩展的贝叶斯工作流程所需的工具,建立在开源概率编程语言Stan的现有成功基础上。 该项目的研究人员团队正在探索算法(近似推理的模型验证),编程语言和编译器(近似算法和高级性能分析的自动化),系统(流数据的概率编程),高性能计算(并行处理和GPU),和硬件(探索用于贝叶斯计算的特定领域硬件)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pathfinder: Parallel quasi-Newton variational inference
探路者:并行拟牛顿变分推理
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:6
- 作者:Zhang, Lu;Carpenter, B;Gelman, A.;Vehtari, A.
- 通讯作者:Vehtari, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Gelman其他文献
C3(H<sub>2</sub>O) – Generation, quantitation, and marker of human disease
- DOI:
10.1016/j.molimm.2018.06.058 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:
- 作者:
Michelle Elvington;M. Kathryn Liszewski;Hrishikesh Kulkarni;Andrew Gelman;Alfred Kim;John Atkinson - 通讯作者:
John Atkinson
A default prior distribution for logistic and other regression models ∗
逻辑和其他回归模型的默认先验分布 *
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Andrew Gelman;Aleks Jakulin;M. G. Pittau;Yu - 通讯作者:
Yu
An improved BISG for inferring race from surname and geolocation
一种改进的 BISG,用于根据姓氏和地理位置推断种族
- DOI:
10.48550/arxiv.2310.15097 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
P. Greengard;Andrew Gelman - 通讯作者:
Andrew Gelman
Community prevalence of SARS-CoV-2 in England during April to September 2020: Results from the ONS Coronavirus Infection Survey
2020 年 4 月至 9 月英格兰 SARS-CoV-2 社区流行情况:ONS 冠状病毒感染调查结果
- DOI:
10.1101/2020.10.26.20219428 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Pouwels;T. House;E. Pritchard;J. Robotham;Paul J. Birrell;Andrew Gelman;K. Vihta;N. Bowers;Ian Boreham;Heledd Thomas;James W Lewis;Iain Bell;J. Bell;J. Newton;J. Farrar;I. Diamond;P. Benton;A. Walker - 通讯作者:
A. Walker
Ethics and Statistics: It's Too Hard to Publish Criticisms and Obtain Data for Republication
伦理与统计学:发表批评和获取重发表数据太难了
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Andrew Gelman - 通讯作者:
Andrew Gelman
Andrew Gelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Gelman', 18)}}的其他基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
RAPID: Flexible, Efficient, and Available Bayesian Computation for Epidemic Models
RAPID:灵活、高效、可用的流行病模型贝叶斯计算
- 批准号:
2055251 - 财政年份:2020
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
- 批准号:
1926578 - 财政年份:2019
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
CI-SUSTAIN: Stan for the Long Run
CI-SUSTAIN:长远发展
- 批准号:
1730414 - 财政年份:2017
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
Collaborative Research: Multilevel Regression and Poststratification: A Unified Framework for Survey Weighted Inference
协作研究:多级回归和后分层:调查加权推理的统一框架
- 批准号:
1534414 - 财政年份:2015
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
CI-ADDO-NEW: Stan, Scalable Software for Bayesian Modeling
CI-ADDO-NEW:Stan,用于贝叶斯建模的可扩展软件
- 批准号:
1205516 - 财政年份:2012
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
CMG: Reconstructing Climate from Tree Ring Data
CMG:从树木年轮数据重建气候
- 批准号:
0934516 - 财政年份:2009
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
Design and Analysis of "How many X's do you know" surveys for the study of polarization in social networks
用于研究社交网络极化的“你知道多少个 X”调查的设计和分析
- 批准号:
0532231 - 财政年份:2005
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
Multilevel Modeling for the Study of Public Opinion and Voting
用于民意和投票研究的多层次建模
- 批准号:
0318115 - 财政年份:2003
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Estimating Congressional District-Level Opinions from National Surveys using a Bayesian Hierarchical Logistic Regression Model
博士论文研究:使用贝叶斯分层逻辑回归模型从全国调查中估计国会选区级意见
- 批准号:
0241709 - 财政年份:2003
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316177 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316235 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 11.72万 - 项目类别:
Continuing Grant