CI-ADDO-NEW: Stan, Scalable Software for Bayesian Modeling

CI-ADDO-NEW:Stan,用于贝叶斯建模的可扩展软件

基本信息

  • 批准号:
    1205516
  • 负责人:
  • 金额:
    $ 49.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

This award is to design, code, document, test, dissememinate, and maintain Stan,an extensibleopen-source software framework and compiler for efficient and scalable Bayesian statistical modeling.Stan is an extensible, open-source, cross-platform software framework for developing Bayesian statisticalmodels. The first step in Bayesian modeling is setting up a full probability model for all quantities ofinterest. Stan facilitates this process by providing an expressive and extensible domain-specificprogramming language for specifying probabilistic models. By compiling a model specification intoexecutable code, Stan fully automates the second step of Bayesian inference, calculating the probabilitiesof unobserved quantities, such as model parameters and future observations, conditional on observed data.The third step involves evaluating the fit of the model to the data and its predictions for unseen data.When the model is easy to encode and inferences are fast and automatic to compute, it is easy to iteratethe specification, fit and evaluation steps in order to refine the scientific model.Stan improves on the existing state of the art in both algorithmic and implementation details. Rather thanbeing interpreted on the fly like its predecessors, Stan models are compiled to C++ code, whichdramatically improves both scalability and efficiency. Stan provides a full algorithmic differentiation library for the functions required for statistical modeling. This method applies the chain rule from calculus to the program computing the probability function in order to calculate derivatives efficiently and accurately (a small multiple of the time taken to compute thefunction, independently of dimensionality). This allows Stan to fully automate the model fitting stagegiven only a specification of the probability function in Stan's modeling language.To maximize Stan's accessibility to the scientific community, it is being coded using standards-compliantC++, so that it will run under Windows, Macintosh, and Unix/Linux. To make running Stan even easier,it is callable from R, MATLAB, and Python, the three most popular platforms for numerical analysis,including exploration and plotting.
该奖项旨在设计,代码,文档,测试,传播和维护Stan,这是一个扩展的托管软件框架和编译器,用于高效且可扩展的贝叶斯统计建模。STAN是一种可扩展的开放源,跨平台的软件框架,用于开发贝叶斯统计模型。贝叶斯建模的第一步是为所有款式的所有数量建立一个完整的概率模型。 Stan通过为指定概率模型提供一种表达和可扩展的域特异性程序语言来促进此过程。通过将模型规范汇编为可取消的代码,Stan完全自动化了贝叶斯推理的第二步,计算未观察到的数量的概率,例如模型参数和未来的观察结果,以观察到的数据为条件。第三步涉及评估模型的拟合度及其对未透露式数据的拟合度的拟合度。为了完善科学模型,伊特拉特(Iterate)的规范,适合和评估步骤。斯坦(Stan)在算法和实施细节中都改善了现有的最新技术状态。 Stan模型并没有像其前身一样随时解释,而是将C ++代码汇编为C ++代码,从而提高了可扩展性和效率。 Stan为统计建模所需的功能提供了完整的算法分化库。此方法将链条规则从微积分到程序计算概率函数以有效,准确地计算衍生物(在计算功能所花费的时间的一小倍数(独立于维度)所花费的时间)。这使Stan仅在Stan的建模语言中仅对概率函数的规范完全自动化模型拟合。为了最大程度地提高Stan对科学界的可访问性,它正在使用符合标准的+++进行编码,以便它在Windows,Macintosh和Unix/linux下运行。为了使运行Stan更加容易,它可以从R,Matlab和Python中呼唤,这是三个最受欢迎的数值分析平台,包括探索和绘图。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Gelman其他文献

Forming Voting Blocs and Coalitions as a Prisoner's Dilemma: A Possible Theoretical Explanation for Political Instability
Community prevalence of SARS-CoV-2 in England during April to September 2020: Results from the ONS Coronavirus Infection Survey
2020 年 4 月至 9 月英格兰 SARS-CoV-2 社区流行情况:ONS 冠状病毒感染调查结果
  • DOI:
    10.1101/2020.10.26.20219428
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Pouwels;T. House;E. Pritchard;J. Robotham;Paul J. Birrell;Andrew Gelman;K. Vihta;N. Bowers;Ian Boreham;Heledd Thomas;James W Lewis;Iain Bell;J. Bell;J. Newton;J. Farrar;I. Diamond;P. Benton;A. Walker
  • 通讯作者:
    A. Walker
Ethics and Statistics: It's Too Hard to Publish Criticisms and Obtain Data for Republication
伦理与统计学:发表批评和获取重发表数据太难了
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Gelman
  • 通讯作者:
    Andrew Gelman
An improved BISG for inferring race from surname and geolocation
一种改进的 BISG,用于根据姓氏和地理位置推断种族
  • DOI:
    10.48550/arxiv.2310.15097
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Greengard;Andrew Gelman
  • 通讯作者:
    Andrew Gelman
A default prior distribution for logistic and other regression models ∗
逻辑和其他回归模型的默认先验分布 *
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Gelman;Aleks Jakulin;M. G. Pittau;Yu
  • 通讯作者:
    Yu

Andrew Gelman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Gelman', 18)}}的其他基金

Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
  • 批准号:
    2311354
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
RAPID: Flexible, Efficient, and Available Bayesian Computation for Epidemic Models
RAPID:灵活、高效、可用的流行病模型贝叶斯计算
  • 批准号:
    2055251
  • 财政年份:
    2020
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Scalable Systems for Probabilistic Programming
协作研究:PPoSS:规划:概率编程的可扩展系统
  • 批准号:
    2029022
  • 财政年份:
    2020
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
  • 批准号:
    1926578
  • 财政年份:
    2019
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CI-SUSTAIN: Stan for the Long Run
CI-SUSTAIN:长远发展
  • 批准号:
    1730414
  • 财政年份:
    2017
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Multilevel Regression and Poststratification: A Unified Framework for Survey Weighted Inference
协作研究:多级回归和后分层:调查加权推理的统一框架
  • 批准号:
    1534414
  • 财政年份:
    2015
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CMG: Reconstructing Climate from Tree Ring Data
CMG:从树木年轮数据重建气候
  • 批准号:
    0934516
  • 财政年份:
    2009
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Design and Analysis of "How many X's do you know" surveys for the study of polarization in social networks
用于研究社交网络极化的“你知道多少个 X”调查的设计和分析
  • 批准号:
    0532231
  • 财政年份:
    2005
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Multilevel Modeling for the Study of Public Opinion and Voting
用于民意和投票研究的多层次建模
  • 批准号:
    0318115
  • 财政年份:
    2003
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Estimating Congressional District-Level Opinions from National Surveys using a Bayesian Hierarchical Logistic Regression Model
博士论文研究:使用贝叶斯分层逻辑回归模型从全国调查中估计国会选区级意见
  • 批准号:
    0241709
  • 财政年份:
    2003
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant

相似海外基金

CI-ADDO-NEW: Collaborative Research: Development of DARwIn Humanoid Robots for Research, Education and Outreach
CI-ADDO-NEW:协作研究:开发用于研究、教育和推广的 DARwIn 人形机器人
  • 批准号:
    1564417
  • 财政年份:
    2015
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
CI-ADDO-NEW: Collaborative Research: A Repository for Annotating Multilingual Code Switched Data
CI-ADDO-NEW:协作研究:用于注释多语言代码交换数据的存储库
  • 批准号:
    1462142
  • 财政年份:
    2014
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CI-ADDO-NEW: Collaborative Research: A Repository for Annotating Multilingual Code Switched Data
CI-ADDO-NEW:协作研究:用于注释多语言代码交换数据的存储库
  • 批准号:
    1343530
  • 财政年份:
    2013
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CI-ADDO-NEW: Collaborative Research: The Speech Recognition Virtual Kitchen
CI-ADDO-NEW:协作研究:语音识别虚拟厨房
  • 批准号:
    1305215
  • 财政年份:
    2013
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
CI-ADDO-NEW: ASTERIX: A Community Software Platform for Big Data Research, Analysis, and Management
CI-ADDO-NEW:ASTERIX:用于大数据研究、分析和管理的社区软件平台
  • 批准号:
    1305253
  • 财政年份:
    2013
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了