Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling

非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用

基本信息

  • 批准号:
    1733909
  • 负责人:
  • 金额:
    $ 1.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-12-14 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

A fundamental challenge faced in fluid dynamics is that the basic governing equations do not account for persistent, randomly driven fluctuations that arise due to uncertainties in modeling from empirical, numerical and physical sources. In view of the wide progress made in computation and given the ubiquity of probabilistic methods in applications there is a clear need to better understand the numerical and analytical underpinnings of stochastic partial differential equations (SPDEs) in general and in relation to the basic equations of fluid dynamics. This project seeks to further the development of numerical and analytical tools for SPDEs with a view towards novel applications in climate and weather modeling and for the study of turbulence.The work will focus in particular on three emerging areas of nonlinear SPDEs. Firstly we will address the theory of invariant measures and statistically steady states. In particular we will develop tools to study inviscid limits in the class of invariant measures for the Navier-Stokes equations and for related models arising in geophysical and turbulence applications. We will also identify and characterize noise regimes leading to ergodic and mixing properties for some previously unaddressed classes of nonlinear SPDEs. A second portion of the project will develop parameter estimation and inverse modeling techniques for noisy nonlinear PDEs. The third portion of the project is devoted to the numerical analysis of nonlinear SPDEs and to developing related analytical tools needed for this purpose.
流体动力学面临的一个根本挑战是,基本的控制方程不考虑持续的,随机驱动的波动,由于从经验,数值和物理来源建模的不确定性。鉴于在计算中取得的广泛进展,并给出了无处不在的概率方法在应用中有一个明确的需要,以更好地了解一般的随机偏微分方程(SPDE)的数值和分析基础,并与流体动力学的基本方程。该项目旨在进一步开发SPDE的数值和分析工具,以期在气候和天气建模以及湍流研究方面实现新的应用,工作将特别侧重于非线性SPDE的三个新兴领域。 首先,我们将讨论不变测度和统计稳态理论。特别是,我们将开发工具来研究在Navier-Stokes方程和相关模型中产生的地球物理和湍流应用的不变措施类的无粘极限。我们还将确定和表征噪声制度导致遍历和混合性质的一些以前未处理的类的非线性SPDE。 该项目的第二部分将开发噪声非线性偏微分方程的参数估计和逆建模技术。 该项目的第三部分是致力于非线性SPDE的数值分析,并开发相关的分析工具,需要为此目的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan Glatt-Holtz其他文献

Nathan Glatt-Holtz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan Glatt-Holtz', 18)}}的其他基金

Collaborative Research: Bayesian Inversion Approaches to Partial Differential Equations: Theory, Algorithm Development, and Applications
合作研究:偏微分方程的贝叶斯反演方法:理论、算法开发和应用
  • 批准号:
    2108790
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Stochastic Methods in Fluid Mechanics: Ergodic Properties, Statistical Sampling, and Uncertainty Quantification
流体力学中的随机方法:遍历特性、统计采样和不确定性量化
  • 批准号:
    1816551
  • 财政年份:
    2018
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Workshop: Probabilistic Perspectives in Nonlinear Partial Differential Equations
研讨会:非线性偏微分方程的概率观点
  • 批准号:
    1700124
  • 财政年份:
    2017
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
  • 批准号:
    1313272
  • 财政年份:
    2013
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1004638
  • 财政年份:
    2010
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Fellowship Award

相似海外基金

Analysis of stochastic chaos in nonlinear stochastic differential equations and its applications
非线性随机微分方程中的随机混沌分析及其应用
  • 批准号:
    21H01002
  • 财政年份:
    2021
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modeling and Analysis of Nonlinear Geometry of Nonstationary Stochastic Models of Deep Neural Networks
深度神经网络非平稳随机模型的非线性几何建模与分析
  • 批准号:
    19H04163
  • 财政年份:
    2019
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a unified framework for optimal control and estimation of nonlinear stochastic systems based on path integral analysis
基于路径积分分析的非线性随机系统最优控制和估计统一框架的开发
  • 批准号:
    15K18089
  • 财政年份:
    2015
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Nonlinear Analysis and Stochastic Differential Equations
非线性分析和随机微分方程
  • 批准号:
    15K13450
  • 财政年份:
    2015
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
  • 批准号:
    1313272
  • 财政年份:
    2013
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Continuing Grant
Nonlinear filtering and stochastic analysis
非线性滤波和随机分析
  • 批准号:
    311945-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear filtering and stochastic analysis
非线性滤波和随机分析
  • 批准号:
    311945-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Fourier Methods in the Analysis of nonstationary and nonlinear stochastic processes
非平稳和非线性随机过程分析中的傅里叶方法
  • 批准号:
    1106518
  • 财政年份:
    2011
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Standard Grant
Nonlinear filtering and stochastic analysis
非线性滤波和随机分析
  • 批准号:
    311945-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear filtering and stochastic analysis
非线性滤波和随机分析
  • 批准号:
    311945-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.8万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了