Collaborative Research: Bayesian Inversion Approaches to Partial Differential Equations: Theory, Algorithm Development, and Applications

合作研究:偏微分方程的贝叶斯反演方法:理论、算法开发和应用

基本信息

  • 批准号:
    2108790
  • 负责人:
  • 金额:
    $ 14.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The project will contribute to a new and rapidly developing area of applied mathematics rich with applications for modeling and challenges for rigorous mathematical analysis. This research will yield important new methods for modeling chemical mixing, biologically active fluids, and geophysical systems. Improving methods for these domain settings will provide more effective tools to address important problems such as the spread of pathogens or pollutants or to quantify the degree and type of climate hazards. The investigators will develop new methodologies for calibrating and designing effective measurement strategies of these various fluid systems, which simultaneously resolve degrees of the inherent uncertainty in these measurements. This project involves the training and active participation of a number of graduate students and other earlier career scientists. The cross institutional and cross disciplinary nature of this project will provide unique opportunities for the participants. Recent advances in computational infrastructure combined with novel mathematical formulations and newly discovered algorithms have allowed the extension of the Bayesian approach to new classes of physics-constrained inverse problems. Solutions typically take many times the computational power of a single solve of a nonlinear forward map based on a partial differential equations (PDEs) where the estimation concerns a function rather than a finite collection of numerical values, namely where we are interested in estimating an infinite-dimensional unknown parameter. The investigators will undertake a research program at the intersection of stochastic and functional analysis, high-performance computing, nonlinear PDEs, and fluid dynamics. Specifically, the investigators will (1) consider a series of physically motivated PDE inverse problems with infinite-dimensional unknowns; (2) develop novel algorithms adapted to efficiently sample from infinite-dimensional measures; (3) develop the ergodic theory for certain classes of infinite-dimensional Markov Chain Monte Carlo (MCMC) algorithms to rigorously assess rates of convergence in sampling target posterior measures; and (4) analyze consistency in the large data observation limit for infinite dimensional models. The project contributes effective frameworks for the measurement of turbulent fluid flows from sparse, irregular data while developing sampling methods of broader interest across computational statistics and data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将有助于一个新的和快速发展的应用数学领域丰富的应用建模和严格的数学分析的挑战。这项研究将产生重要的新方法,模拟化学混合,生物活性流体和地球物理系统。改进这些领域的方法将提供更有效的工具来解决重要问题,如病原体或污染物的传播或量化气候灾害的程度和类型。研究人员将开发新的方法来校准和设计这些不同流体系统的有效测量策略,同时解决这些测量中固有的不确定性程度。该项目涉及到一些研究生和其他早期职业科学家的培训和积极参与。该项目的跨机构和跨学科性质将为参与者提供独特的机会。计算基础设施的最新进展,结合新的数学公式和新发现的算法,允许扩展的贝叶斯方法的物理约束的逆问题的新类别。解决方案通常需要许多倍的计算能力的一个单一的解决方案的非线性前向映射的基础上偏微分方程(PDE)的估计关注的函数,而不是一个有限的数值集合,即我们感兴趣的是在估计一个无限维的未知参数。研究人员将在随机和功能分析,高性能计算,非线性偏微分方程和流体动力学的交叉点进行研究计划。具体而言,研究人员将(1)考虑一系列具有无限维未知数的物理激励PDE逆问题;(2)开发适用于从无限维测量有效采样的新算法;(3)为某些类别的无限维马尔可夫链蒙特卡罗(MCMC)算法开发遍历理论,以严格评估采样目标后验测量的收敛速度;(4)分析无限维模型大数据观测限的一致性。该项目为从稀疏、不规则的数据中测量湍流提供了有效的框架,同时开发了跨计算统计和数据科学的更广泛兴趣的采样方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A statistical framework for domain shape estimation in Stokes flows
  • DOI:
    10.1088/1361-6420/acdd8e
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    J. Borggaard;N. Glatt-Holtz;J. Krometis
  • 通讯作者:
    J. Borggaard;N. Glatt-Holtz;J. Krometis
On the surprising effectiveness of a simple matrix exponential derivative approximation, with application to global SARS-CoV-2.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan Glatt-Holtz其他文献

Nathan Glatt-Holtz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan Glatt-Holtz', 18)}}的其他基金

Stochastic Methods in Fluid Mechanics: Ergodic Properties, Statistical Sampling, and Uncertainty Quantification
流体力学中的随机方法:遍历特性、统计采样和不确定性量化
  • 批准号:
    1816551
  • 财政年份:
    2018
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Workshop: Probabilistic Perspectives in Nonlinear Partial Differential Equations
研讨会:非线性偏微分方程的概率观点
  • 批准号:
    1700124
  • 财政年份:
    2017
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
  • 批准号:
    1733909
  • 财政年份:
    2016
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Analysis of Nonlinear Stochastic Partial Differential Equations with Applications in Turbulence Theory and Climate Modeling
非线性随机偏微分方程分析及其在湍流理论和气候建模中的应用
  • 批准号:
    1313272
  • 财政年份:
    2013
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1004638
  • 财政年份:
    2010
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333326
  • 财政年份:
    2023
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333324
  • 财政年份:
    2023
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
  • 批准号:
    2333325
  • 财政年份:
    2023
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
  • 批准号:
    2210282
  • 财政年份:
    2022
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215169
  • 财政年份:
    2022
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
  • 批准号:
    2215168
  • 财政年份:
    2022
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
  • 批准号:
    2215920
  • 财政年份:
    2022
  • 资助金额:
    $ 14.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了