The Science and Fundamental Understanding of the Radio Frequency Surface Resistance of Nitrogen Doped SRF cavities

氮掺杂 SRF 腔射频表面电阻的科学和基本理解

基本信息

  • 批准号:
    1734332
  • 负责人:
  • 金额:
    $ 47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The research enabled by this award will improve the understanding of one of the physical processes that determine, and may ultimately limit, the performance of future particle accelerators. Particle accelerators have a wide variety of uses, from basic research machines for fundamental studies of elementary particle physics to tools and instruments ranging from industrial welding to medical diagnostics and treatment. One of the key limiting factors for particle accelerators can be the performance of superconducting, radio-frequency cavities that are used to accelerate the electrically charged particles. By discovering the mechanisms presently contributing to energy dissipation within such cavities, we can push the technology to theoretical limits for the next generation of superconducting particle accelerators. This research project involves the training of graduate students as the next generation of research leaders with expertise in accelerator science and technology, as well as the physics of superconducting materials for particle accelerators and related technologies.This award supports research and graduate education in the field of superconducting, radio-frequency (RF) accelerator science. The research supported by this award is directed towards a fundamental understanding of the physical processes governing the region of field penetration into Nitrogen-doped Niobium superconductors used in state-of-the-art RF cavities for particle accelerators. The research involves physical and chemical characterization, on the sub-nanometer scale, of the sub-micron deep surface layer near the vacuum-superconducting interface where the RF screening currents flow. Surface profile characterization, from sub-nano-meter to micron length scales, will be carried out, and combined with local electronic and magnetic properties obtained from atom-probe reconstruction, nuclear magnetic resonance spectroscopy, and transport measurements in the normal metallic phase of Niobium. The detailed atomic-scale structure of the surface and screening region will be combined with state-of-the-art theoretical modeling and computational theory for the RF currents under high-field conditions. The overarching goal is to push performance of next-generation superconducting RF cavities to theoretical limits.
由该奖项促成的研究将提高对决定并可能最终限制未来粒子加速器性能的物理过程之一的理解。粒子加速器用途广泛,从用于基础粒子物理基础研究的基础研究机器,到从工业焊接到医疗诊断和治疗的工具和仪器。粒子加速器的关键限制因素之一可能是用于加速带电粒子的超导射频腔的性能。通过发现目前在这种腔内造成能量耗散的机制,我们可以将这项技术推向下一代超导粒子加速器的理论极限。该研究项目涉及培养研究生作为下一代研究领导者,拥有加速器科学和技术以及用于粒子加速器的超导材料物理和相关技术的专业知识。该奖项支持超导、射频(RF)加速器科学领域的研究和研究生教育。该奖项支持的研究旨在对用于粒子加速器最先进的射频腔中的掺氮Nb超导体的场穿透区域的物理过程有一个基本的了解。这项研究包括在亚纳米尺度上对真空-超导界面附近的亚微米深表面层进行物理和化学表征,射频屏蔽电流流经该界面。将进行从亚纳米到微米长度的表面轮廓表征,并结合通过原子探针重建、核磁共振光谱和正常金属相中的输运测量获得的局部电子和磁性。表面和屏蔽区的详细原子尺度结构将与高场条件下射频电流的最新理论建模和计算理论相结合。首要目标是将下一代超导射频腔的性能推向理论极限。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Andreev bound states and their signatures
INVESTIGATION OF FREQUENCY BEHAVIOR NEAR TC OF NIOBIUM SUPERCONUDCTING RADIO-FREQUENCYCAVITIES
铌超导射频腔TC附近频率行为研究
Effect of inhomogeneous surface disorder on the superheating field of superconducting RF cavities
不均匀表面紊乱对超导射频腔过热场的影响
  • DOI:
    10.1103/physrevresearch.1.012015
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Ngampruetikorn, Vudtiwat;Sauls, J. A.
  • 通讯作者:
    Sauls, J. A.
Field-Enhanced Superconductivity in High-Frequency Niobium Accelerating Cavities
高频铌加速腔中的场增强超导
  • DOI:
    10.1103/physrevlett.121.224801
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Martinello, M.;Checchin, M.;Romanenko, A.;Grassellino, A.;Aderhold, S.;Chandrasekeran, S. K.;Melnychuk, O.;Posen, S.;Sergatskov, D. A.
  • 通讯作者:
    Sergatskov, D. A.
Frequency dependence of trapped flux sensitivity in SRF cavities
SRF 腔中俘获磁通灵敏度的频率依赖性
  • DOI:
    10.1063/1.5016525
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Checchin, M.;Martinello, M.;Grassellino, A.;Aderhold, S.;Chandrasekaran, S. K.;Melnychuk, O. S.;Posen, S.;Romanenko, A.;Sergatskov, D. A.
  • 通讯作者:
    Sergatskov, D. A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Sauls其他文献

James Sauls的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Sauls', 18)}}的其他基金

Nonequilibrium States of Topological Quantum Fluids and Unconventional Superconductors
拓扑量子流体和非常规超导体的非平衡态
  • 批准号:
    1508730
  • 财政年份:
    2015
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
Excitations, Topological Defects and Quantum Transport in Superconductors and Superfluid 3He in Confined Geometries
受限几何中超导体和超流体 3He 中的激发、拓扑缺陷和量子输运
  • 批准号:
    1106315
  • 财政年份:
    2011
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
Magneto-Acoustic and Quantum Transport in Helium Three
氦三中的磁声和量子输运
  • 批准号:
    0805277
  • 财政年份:
    2008
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
U.S.-Finland Cooperative Research: Theory of Josephson Effects in Superfluid Helium-3
美国-芬兰合作研究:超流氦3中的约瑟夫森效应理论
  • 批准号:
    8813867
  • 财政年份:
    1988
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Understanding Collisionless Magnetic Reconnection as a Fundamental Heliospheric Process
职业:理解无碰撞磁重联作为基本的日光层过程
  • 批准号:
    2338131
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
Can we heal people using electricity? Developing fundamental understanding and bioelectronic devices to exploit bioelectricity in bioengineering.
我们可以用电来治愈人们吗?
  • 批准号:
    MR/X032159/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Fellowship
Understanding Fundamental Mechanisms that Underlie Nano-Neuro Interactions
了解纳米神经相互作用的基本机制
  • 批准号:
    2331330
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
Fundamental understanding of turbulent flow over fluid-saturated complex porous media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W03350X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47万
  • 项目类别:
    Research Grant
Fundamental Understanding of Chemical Complexity on Crack Tip Plasticity of Refractory Complex Concentrated Alloys
化学复杂性对难熔复合浓缩合金裂纹尖端塑性的基本认识
  • 批准号:
    2316762
  • 财政年份:
    2023
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
Fundamental Understanding of Turbulent Flow over Fluid-Saturated Complex Porous Media
对流体饱和复杂多孔介质上湍流的基本理解
  • 批准号:
    EP/W033550/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47万
  • 项目类别:
    Research Grant
Toward Improved Understanding of Fundamental Processes Controlling the Size-Resolved Properties of Particles in the Stratosphere
提高对控制平流层粒子尺寸分辨特性的基本过程的理解
  • 批准号:
    2325458
  • 财政年份:
    2023
  • 资助金额:
    $ 47万
  • 项目类别:
    Continuing Grant
ERI: Increasing the Fundamental Understanding of the Auxetic Behavior of Graphene Oxide Membranes
ERI:增加对氧化石墨烯膜拉胀行为的基本了解
  • 批准号:
    2301838
  • 财政年份:
    2023
  • 资助金额:
    $ 47万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了