ATD: Surveillance Evasion and Threat Avoidance
ATD:监视规避和威胁规避
基本信息
- 批准号:1738010
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The growing availability of data on pedestrian movement allows for increasingly sophisticated models of people's goals, preferences, and perception of their environment. Such models are important not only in traffic engineering ("How do we structure the foyer in this building to avoid a stampede in case of evacuation?") but also in improving our ability to detect emerging threats in urban settings. Any dramatic change in the usual "patterns of life" might provide a clue about the evolving conditions ("Why did this group of pedestrians take such an unusual path to their target? Why is there suddenly a crowd at this intersection?"), while the analysis of data aggregated over a longer horizon can be also useful in improving our monitoring and modeling ("Which parts of the city are generally perceived as more dangerous? Where should we deploy our limited observation resources?"). This project focuses on two specific applications: (a) civilians in dangerous environments planning their paths to minimize threat exposure, and (b) adversaries aware of the existing monitoring measures planning their paths to evade the observation. In both contexts, the PIs propose models and numerical methods for (1) path planning based on one's beliefs about the environment and (2) adversarial/robust path planning, with the environment possibly changing in response to people's routing choices. The threat avoidance under selfish/independent decision making will be also treated in the framework of "mean field games". The proposed approach draws on methods from game theory, convex optimization, optimal control, and multi-objective dynamic programming. The information patterns built into this model make it possible to leverage the efficiency of fast numerical algorithms already developed for a broad range of deterministic optimal control applications. This project continues earlier work on causal/non-iterative numerical methods and distributed optimal control.
越来越多的行人运动数据的可用性使得人们的目标、偏好和对环境的感知的模型变得越来越复杂。这些模型不仅在交通工程中很重要(“我们该如何设计这栋大楼的门厅,以避免疏散时发生踩踏?”)同时也提高了我们在城市环境中发现新威胁的能力。通常的“生活模式”的任何戏剧性变化都可能为不断变化的环境提供线索(“为什么这群行人要走这样一条不寻常的路去他们的目标?”)为什么这个十字路口突然有一群人?),而对较长时期内汇总的数据进行分析,也有助于改进我们的监测和建模(“城市的哪些部分通常被认为更危险?”我们应该把有限的观察资源部署在哪里?”)。该项目侧重于两个具体应用:(a)危险环境中的平民规划其路径以最大限度地减少威胁暴露,以及(b)了解现有监测措施的对手规划其路径以逃避观察。在这两种情况下,pi提出了(1)基于人们对环境的信念的路径规划和(2)对抗性/鲁棒性路径规划的模型和数值方法,环境可能会随着人们的路径选择而变化。自私/独立决策下的威胁规避也将在“平均场博弈”的框架下进行研究。该方法借鉴了博弈论、凸优化、最优控制和多目标动态规划等方法。该模型内建的信息模式使得利用已经为广泛的确定性最优控制应用开发的快速数值算法的效率成为可能。该项目继续早期在因果/非迭代数值方法和分布式最优控制方面的工作。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Stopping with a Probabilistic Constraint
具有概率约束的最佳停止
- DOI:10.1007/s10957-017-1183-3
- 发表时间:2017
- 期刊:
- 影响因子:1.9
- 作者:Palmer, Aaron Zeff;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
Evasive Path Planning Under Surveillance Uncertainty
监视不确定性下的规避路径规划
- DOI:10.1007/s13235-019-00327-x
- 发表时间:2020
- 期刊:
- 影响因子:1.5
- 作者:Gilles, Marc Aurèle;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
Optimal Path-Planning With Random Breakdowns
随机故障的最优路径规划
- DOI:10.1109/lcsys.2021.3130193
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Gee, Marissa;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
Adaptive Online Distributed Optimal Control of Very-Large-Scale Robotic Systems
- DOI:10.1109/tcns.2021.3097306
- 发表时间:2020-03
- 期刊:
- 影响因子:4.2
- 作者:Pingping Zhu;Chang Liu;S. Ferrari
- 通讯作者:Pingping Zhu;Chang Liu;S. Ferrari
Control-Theoretic Models of Environmental Crime
环境犯罪的控制理论模型
- DOI:10.1137/19m1270483
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Cartee, Elliot;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Vladimirsky其他文献
Monotone Causality in Opportunistically Stochastic Shortest Path Problems
机会随机最短路径问题中的单调因果关系
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mallory E. Gaspard;Alexander Vladimirsky - 通讯作者:
Alexander Vladimirsky
Alexander Vladimirsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Vladimirsky', 18)}}的其他基金
Optimality and Robustness in Piecewise-Deterministic Systems
分段确定性系统的最优性和鲁棒性
- 批准号:
2111522 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Causality as a source of efficiency in numerical methods.
因果关系是数值方法效率的来源。
- 批准号:
1016150 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Non-iterative Numerical Methods for Boundary Value Problems
边值问题的非迭代数值方法
- 批准号:
0514487 - 财政年份:2005
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Fast Methods for Static Hamilton-Jacobi Partial Differential Equations
静态 Hamilton-Jacobi 偏微分方程的快速方法
- 批准号:
0102072 - 财政年份:2001
- 资助金额:
$ 40万 - 项目类别:
Fellowship Award
相似海外基金
Nuclear RNA surveillance and its connection to splicing quality control
核 RNA 监测及其与剪接质量控制的联系
- 批准号:
DP240102611 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Multiomics for the diagnostic and surveillance of infectious diseases
用于传染病诊断和监测的多组学
- 批准号:
502560 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Active one health surveillance in LMICs to monitor and predict Antimicrobial Resistance Using Metagenomics (ALARUM)
在中低收入国家中开展主动单一健康监测,利用宏基因组学 (ALARUM) 监测和预测抗菌药物耐药性
- 批准号:
MR/Y034287/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
- 批准号:
10109956 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
EU-Funded
Secure Management of Internet of Things Data for Critical Surveillance
关键监控物联网数据的安全管理
- 批准号:
LP230100276 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Linkage Projects
TEXAS: Towards next-generation AMR surveillance: Assessment of novel technologies with high-throughput and multiplexing potential
德克萨斯州:迈向下一代 AMR 监测:评估具有高通量和多重潜力的新技术
- 批准号:
MR/Z000017/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
- 批准号:
MR/Y034457/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Optimising disease surveillance to support decision-making
优化疾病监测以支持决策
- 批准号:
DP240102286 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Beyond Big Brother: New Narratives for Understanding Surveillance
超越老大哥:理解监控的新叙述
- 批准号:
DE240101246 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Early Career Researcher Award