Causality as a source of efficiency in numerical methods.
因果关系是数值方法效率的来源。
基本信息
- 批准号:1016150
- 负责人:
- 金额:$ 24.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-02-15 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Iterative methods for large non-linear systems of coupled equations are often prohibitively expensive. Such systems frequently result from discretizations of static nonlinear partial differential equations, presenting practitioners with a computational efficiency "bottleneck". However, in many applications (from robotic navigation to photolithography, seismic imaging, computational geometry, optics, differential games, and segmentation of images) the direction of "information flow" can be used to successively eliminate or at least significantly decrease the coupling of equations, resulting in efficient (often non-iterative) numerical methods. The related notion of "causality" provides an a priori unobvious yet natural ordering of the elements of computation. The primary investigator and his collaborators have previously introduced such causal algorithms for problems in anisotropic & hybrid deterministic control and for approximations of geometrically stiff invariant manifolds. Currently, the primary investigator develops efficient algorithms for a wider class of "structurally causal" stochastic problems on graphs and in continuous domains. This includes important special types of uncertainty & stochasticity as well as optimal control problems with multiple length scales. The investigator and his colleagues also use approximations of Lagrangian manifolds to build efficient methods for recovering multivalued solutions of nonlinear first-order PDEs -- a problem of high practical importance in dispersive waves computations, multiple-arrival seismic imaging and tomography.Real-time answers to many important practical questions depend on availability of robust and efficient numerical methods for the corresponding partial differential equations. What is the minimum safe distance for the aircraft collision avoidance? How should an "idle" ambulance be routed in between emergency calls? Which trajectory is optimal for a rover traveling on the surface of Mars? The prior numerical techniques help one answer these questions, but only under unrealistic/idealized conditions: a single criterion (e.g., energy-optimal trajectories only), a known terminal time, a single reliable map of the terrain, etc. The PI's current work makes a difference in incorporating multiple criteria (e.g., time versus energy versus money) and uncertainty (when will the next emergency call be received?) into the decision making process without excessive computational costs.
求解大型非线性耦合方程组的迭代方法通常是非常昂贵的。这类系统通常是由静态非线性偏微分方程的离散化产生的,给实践者带来了计算效率的“瓶颈”。然而,在许多应用中(从机器人导航到光刻、地震成像、计算几何、光学、微分游戏和图像分割),“信息流”的方向可以用来连续消除或至少显着减少方程的耦合,从而产生有效的(通常是非迭代的)数值方法。相关的“因果关系”概念提供了一种先验的不明显但自然的计算元素顺序。主调查员和他的合作者曾介绍这样的因果算法问题的各向异性和混合确定性控制和不变流形几何近似的僵硬。目前,主要研究者为图和连续域上更广泛的“结构因果”随机问题开发了有效的算法。这包括重要的特殊类型的不确定性&随机性以及多长度尺度的最优控制问题。研究者和他的同事们还使用拉格朗日流形的近似来建立有效的方法来恢复非线性一阶偏微分方程的多值解——这是一个在色散波计算、多次到达地震成像和层析成像中具有高度实际重要性的问题。许多重要实际问题的实时答案取决于相应偏微分方程的鲁棒和有效的数值方法的可用性。飞机避碰的最小安全距离是多少?一辆“闲置”的救护车应该如何安排在紧急呼叫之间?对于在火星表面运行的探测车来说,哪条轨道是最优的?先前的数值技术有助于回答这些问题,但仅在不现实/理想化的条件下:单一标准(例如,仅能量最优轨迹),已知的终端时间,单一可靠的地形地图等。PI目前的工作在将多种标准(例如,时间、精力和金钱)和不确定性(何时会收到下一个紧急呼叫?)纳入决策过程中发挥了作用,而不会产生过多的计算成本。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anisotropic challenges in pedestrian flow modeling
行人流建模中的各向异性挑战
- DOI:10.4310/cms.2018.v16.n4.a7
- 发表时间:2018
- 期刊:
- 影响因子:1
- 作者:Cartee, Elliot;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
Optimal Stopping with a Probabilistic Constraint
具有概率约束的最佳停止
- DOI:10.1007/s10957-017-1183-3
- 发表时间:2017
- 期刊:
- 影响因子:1.9
- 作者:Palmer, Aaron Zeff;Vladimirsky, Alexander
- 通讯作者:Vladimirsky, Alexander
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Vladimirsky其他文献
Monotone Causality in Opportunistically Stochastic Shortest Path Problems
机会随机最短路径问题中的单调因果关系
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mallory E. Gaspard;Alexander Vladimirsky - 通讯作者:
Alexander Vladimirsky
Alexander Vladimirsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Vladimirsky', 18)}}的其他基金
Optimality and Robustness in Piecewise-Deterministic Systems
分段确定性系统的最优性和鲁棒性
- 批准号:
2111522 - 财政年份:2021
- 资助金额:
$ 24.92万 - 项目类别:
Standard Grant
ATD: Surveillance Evasion and Threat Avoidance
ATD:监视规避和威胁规避
- 批准号:
1738010 - 财政年份:2017
- 资助金额:
$ 24.92万 - 项目类别:
Continuing Grant
Non-iterative Numerical Methods for Boundary Value Problems
边值问题的非迭代数值方法
- 批准号:
0514487 - 财政年份:2005
- 资助金额:
$ 24.92万 - 项目类别:
Continuing Grant
Fast Methods for Static Hamilton-Jacobi Partial Differential Equations
静态 Hamilton-Jacobi 偏微分方程的快速方法
- 批准号:
0102072 - 财政年份:2001
- 资助金额:
$ 24.92万 - 项目类别:
Fellowship Award
相似国自然基金
数学之源书(Source book in mathematics)的翻译与出版
- 批准号:11826405
- 批准年份:2018
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
稀疏表示及其在盲源分离中的应用研究
- 批准号:61104053
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
产铀花岗岩体的铀源矿物及活化机制的精细矿物学研究
- 批准号:41072028
- 批准年份:2010
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
BRAIN CONNECTS: Center for a pipeline of high throughput integrated volumetric electron microscopy for whole mouse brain connectomics
大脑连接:用于全小鼠大脑连接组学的高通量集成体积电子显微镜管道中心
- 批准号:
10665386 - 财政年份:2023
- 资助金额:
$ 24.92万 - 项目类别:
Intravitreal gene therapy for inherited retinal disease
遗传性视网膜疾病的玻璃体内基因治疗
- 批准号:
10660784 - 财政年份:2023
- 资助金额:
$ 24.92万 - 项目类别:
High efficiency microfluidic device for large scale engineered cell therapy manufacturing
用于大规模工程细胞治疗制造的高效微流体装置
- 批准号:
10693775 - 财政年份:2023
- 资助金额:
$ 24.92万 - 项目类别:
Manufacturing of High-Efficiency Perovskite Solar Cells via Coupled Ion Source and Magnetron Discharges
通过耦合离子源和磁控管放电制造高效钙钛矿太阳能电池
- 批准号:
2243110 - 财政年份:2023
- 资助金额:
$ 24.92万 - 项目类别:
Standard Grant
Molecular epidemiology of respiratory virus exposure in elementary schools
小学呼吸道病毒暴露的分子流行病学
- 批准号:
10646577 - 财政年份:2023
- 资助金额:
$ 24.92万 - 项目类别:
High efficiency particulate air cleaner intervention to reduce respiratory virus exposure in elementary schools
高效颗粒空气净化器干预减少小学呼吸道病毒暴露
- 批准号:
10722583 - 财政年份:2023
- 资助金额:
$ 24.92万 - 项目类别:
Action towards health equity and improved air quality in the Duwamish Valley: A multilevel asthma intervention
杜瓦米什山谷的健康公平和空气质量改善行动:多层次哮喘干预
- 批准号:
10562132 - 财政年份:2023
- 资助金额:
$ 24.92万 - 项目类别:
Improving the efficiency and equity of critical care allocation during a crisis with place-based disadvantage indices
利用基于地点的劣势指数提高危机期间重症监护分配的效率和公平性
- 批准号:
10638835 - 财政年份:2023
- 资助金额:
$ 24.92万 - 项目类别:
CRISPR-based transistors for high throughput multiplexed monitoring of CRISPR-based editing efficiency for Sickle cells disease
基于 CRISPR 的晶体管,用于高通量多重监测镰状细胞病的基于 CRISPR 的编辑效率
- 批准号:
10548152 - 财政年份:2022
- 资助金额:
$ 24.92万 - 项目类别: