Non-iterative Numerical Methods for Boundary Value Problems

边值问题的非迭代数值方法

基本信息

  • 批准号:
    0514487
  • 负责人:
  • 金额:
    $ 22.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

Static non-linear Partial Differential Equations (PDEs) describe a variety of problems in physics and engineering. Numerical schemes are commonly used to approximate the solution satisfying particular boundary conditions. Such schemes usually require solving a large system of coupled non-linear discretized equations. Iterative methods for such systems can be very expensive computationally, often leading practitioners to use alternative problem descriptions to avoid solving the full boundary value problem. The investigator proposes a family of fast (non-iterative) methods for a wide class of static PDEs, for which the direction of "information flow" defines a natural ordering on the discretized equations. In a joint work with J.A. Sethian, non-iterative Ordered Upwind Methods (OUMs) were introduced for Hamilton-Jacobi PDEs arising in anisotropic (& hybrid) control and in front propagation. The investigator proposes to extend OUMs to boundary value problems describing differential games and non-autonomous optimal control problems. In a joint work with J. Guckenheimer, the OUMs were previously applied to a special system of quasilinear PDEs to approximate invariant manifolds of vector fields. The investigator proposes to extend the invariant manifold approach to compute multi-valued solutions of boundary value problems.The efficiency of the proposed methods stems from the notion of "causality" -- unobvious yet natural ordering of the elements of computation. This approach is relevant for the applications as diverse as robotic navigation and photolithography, seismic imaging and computational geometry, optics and transient elastography, differential games and segmentation of images. Which trajectory is optimal for a rover traveling on the surface of Mars? With what delay and how strongly will an underground explosion be felt by a sensor at a given point on the surface? What are the optimal parameter values for etching and deposition in the integrated circuit manufacturing? What is the minimum safe distance for the aircraft collision avoidance? Will the electrical power system automatically recover after a "fault"? Answering these important practical questions in real time requires efficient and robust numerical methods for solving the corresponding partial differential equations.
静态非线性偏微分方程(PDE)描述了物理和工程中的各种问题。数值格式通常用于近似满足特定边界条件的解。这样的计划通常需要解决一个大的系统耦合非线性离散方程。这种系统的迭代方法在计算上可能非常昂贵,通常导致从业者使用替代问题描述来避免解决完整的边界值问题。调查员提出了一个家庭的快速(非迭代)的方法为广泛的一类静态偏微分方程,“信息流”的方向定义了一个自然的顺序离散方程。在与J.A.的合作中,Sethian,非迭代有序迎风方法(OUM)被引入到各向异性(混合)控制和前向传播中产生的Hamilton-Jacobi偏微分方程。研究者建议将OUM扩展到描述微分博弈和非自治最优控制问题的边值问题。 在与J. Guckenheimer的一项联合工作中,OUM先前被应用于一个特殊的拟线性偏微分方程系统,以近似向量场的不变流形。研究者提出将不变流形方法扩展到计算边值问题的多值解,所提出的方法的效率源于“因果关系”的概念-计算元素的不明显但自然的排序。 这种方法是相关的机器人导航和光刻,地震成像和计算几何,光学和瞬态弹性成像,差分游戏和图像分割等不同的应用。 火星车在火星表面行驶的最佳轨迹是什么? 地面上某个特定点的传感器会在多长时间内感觉到地下爆炸,感觉到的强度有多大? 集成电路制造中蚀刻和沉积的最佳参数值是多少? 飞机避碰的最小安全距离是多少? 电力系统“故障”后会自动恢复吗?要在真实的时间内解决这些重要的实际问题,需要高效而稳健的数值方法来求解相应的偏微分方程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Vladimirsky其他文献

Monotone Causality in Opportunistically Stochastic Shortest Path Problems
机会随机最短路径问题中的单调因果关系
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mallory E. Gaspard;Alexander Vladimirsky
  • 通讯作者:
    Alexander Vladimirsky

Alexander Vladimirsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Vladimirsky', 18)}}的其他基金

Optimality and Robustness in Piecewise-Deterministic Systems
分段确定性系统的最优性和鲁棒性
  • 批准号:
    2111522
  • 财政年份:
    2021
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Standard Grant
ATD: Surveillance Evasion and Threat Avoidance
ATD:监视规避和威胁规避
  • 批准号:
    1738010
  • 财政年份:
    2017
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Continuing Grant
Causality as a source of efficiency in numerical methods.
因果关系是数值方法效率的来源。
  • 批准号:
    1016150
  • 财政年份:
    2011
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Continuing Grant
Fast Methods for Static Hamilton-Jacobi Partial Differential Equations
静态 Hamilton-Jacobi 偏微分方程的快速方法
  • 批准号:
    0102072
  • 财政年份:
    2001
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Fellowship Award

相似海外基金

Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
  • 批准号:
    20K19749
  • 财政年份:
    2020
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
XPS: FULL: Emerging Nonvolatile Memory for Analog-iterative Numerical Methods
XPS:FULL:用于模拟迭代数值方法的新兴非易失性存储器
  • 批准号:
    1628384
  • 财政年份:
    2016
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Standard Grant
A formal method for iterative numerical algorithms using declarative descriptions
使用声明性描述的迭代数值算法的形式方法
  • 批准号:
    26540028
  • 财政年份:
    2014
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Visual Analysis Tool for Acceleration of Convergence Process in Iterative Numerical Computation
用于加速迭代数值计算收敛过程的可视化分析工具
  • 批准号:
    22500044
  • 财政年份:
    2010
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Accurate Numerical Methods for Turbulent Open Channel Flows with Complex Geometries
复杂几何形状的湍流明渠流精确数值方法的开发
  • 批准号:
    03650416
  • 财政年份:
    1991
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Numerical Considerations in Solving Multiclass Queueing Networks By an Approximate Iterative Method (Computer Science)
通过近似迭代方法求解多类排队网络的数值考虑(计算机科学)
  • 批准号:
    8300438
  • 财政年份:
    1983
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Standard Grant
Numerical Iterative and Noniterative Filters For I11-Posed And Noisy Equations Arising From Linear and Nonlinear Inversion Problems
线性和非线性反演问题引起的 I11 方程和噪声方程的数值迭代和非迭代滤波器
  • 批准号:
    8007956
  • 财政年份:
    1980
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Standard Grant
A Numerical Investigation of Iterative Methods For Algebraic Equations
代数方程迭代方法的数值研究
  • 批准号:
    7805847
  • 财政年份:
    1978
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Standard Grant
Numerical Iterative Filters For I11-Posed and Noisy Equations Arising From Linear and Nonlinear Inversion Problems
用于线性和非线性反演问题引起的 I11 方程和噪声方程的数值迭代滤波器
  • 批准号:
    7702730
  • 财政年份:
    1977
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Standard Grant
A Numerical Investigation of Iterative Method For Solving Linear and Nonlinear Equations
求解线性和非线性方程的迭代法的数值研究
  • 批准号:
    7609215
  • 财政年份:
    1976
  • 资助金额:
    $ 22.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了