EPSRC-CBET:Turbulent flows over heterogeneous multiscale surfaces
EPSRC-CBET:异质多尺度表面上的湍流
基本信息
- 批准号:1738918
- 负责人:
- 金额:$ 35.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In almost all engineering and environmental flows, turbulent boundary layers (the part of the flow closest to a given surface) are in the rough-wall regime. Typical examples include boundary layers developing over surface irregularities on aircraft and wind turbine blades, macro bio-fouled ship hulls, edges of forests or wind-farms, urban canopies, crop boundaries, river-beds, and wind over rough seas. Despite decades of sustained research, accurate predictions of momentum transfers and/or skin-friction drag based on geometric information about the surface alone are difficult. This is primarily because in most cases, the topography of surface roughness is multi-scale, that is to say, it contains a wide variety of roughness length scales. Moreover, the variation in the range of roughness length scales and the distribution of the roughness features is heterogeneous across the surface. Current predictive approaches, designed mostly for homogeneous and single-scale roughness element distributions, can neither accurately predict nor offer insights into the complex physics of flow over multi-scale heterogeneous surfaces. In this collaborative research,a systematic approach to characterize drag and the mechanisms of momentum transfers in flows over heterogeneous multi-scale surfaces will be applied. This research will be broadly relevant to a large number of industries where flows over rough surfaces are critical for performance. In the transportation industry for example, the drag incurred by rough surfaces has important impact on transportation efficiency and its environmental footprint. This research is also important for understanding and modeling atmospheric flows, of relevance to weather prediction. The flows over complex terrain are currently poorly resolved in most atmospheric flow models and there is a need for improved predictive models. Better predictive models are also important for understanding flows in urban regions and wind farms.In this project, a series of high-fidelity computer simulations - to be carried out at Johns Hopkins in the US - and of physical experiments - to be performed at Southampton in the UK - will generate unprecedented data of flows over heterogeneous, multi-scale surfaces. Numerical modeling will be based on Large Eddy Simulation that uses a novel integral wall model implemented in a high-accuracy finite difference solver that uses sharp immersed boundary method to resolve larger-scale roughness elements. Three different cases will be considered both numerically and experimentally: (i) an abrupt change in nature of multi-scale roughness, (ii) finite patch of multi-scale roughness, and (iii) repeated changes in multi-scale roughness. The data will be analyzed and simulations and experiments compared. The experimental and numerical data as well as the physical insights obtained will be used to test existing, and develop new, analytical models that enable accurate prediction of drag and momentum transfers based only on available information about the topography of multi-scale heterogeneous surfaces. The project will strengthen graduate education, since the PhD student who will be a part of this project will gain substantial expertise in computational methods, modeling strategies and collaborating internationally with experimentalists. This training will be invaluable as these methodologies are widely recognized as areas of substantial growth in the coming decades, where experienced researchers will be most needed.
在几乎所有的工程和环境流动中,湍流边界层(最接近给定表面的流动部分)处于粗糙壁区域。典型的例子包括在飞机和风力涡轮机叶片表面不规则处形成的边界层、被宏观生物污染的船体、森林或风力发电场的边缘、城市树冠、作物边界、河床和波涛汹涌的海面上的风。尽管进行了数十年的持续研究,但仅根据表面的几何信息来准确预测动量传递和/或表面摩擦阻力是困难的。这主要是因为在大多数情况下,表面粗糙度的地形是多尺度的,也就是说,它包含了各种各样的粗糙度长度尺度。此外,粗糙度长度尺度的范围和粗糙度特征的分布在整个地表上是不均匀的。目前的预测方法大多是针对均匀和单尺度的粗糙度元素分布设计的,既不能准确地预测,也不能提供对多尺度非均匀表面上流动的复杂物理的洞察。在这项合作研究中,将应用一种系统的方法来表征非均匀多尺度表面上流动中的阻力和动量传递机制。这项研究将广泛适用于许多行业,在这些行业中,粗糙表面上的流动对性能至关重要。例如,在运输行业中,粗糙表面产生的阻力对运输效率及其环境足迹有重要影响。这项研究对于理解和模拟与天气预报相关的大气流动也很重要。目前,在大多数大气流动模型中,复杂地形上的流动的分辨率很差,需要改进的预测模型。更好的预测模型对于了解城市地区和风电场的流动也很重要。在这个项目中,一系列高保真的计算机模拟-将在美国约翰·霍普金斯大学进行-以及一系列物理实验-将在英国南安普顿进行-将产生史无前例的不同种类、多尺度表面上的流动数据。数值模拟将基于大涡模拟,该模拟使用一种在高精度有限差分解算器中实现的新型整体壁面模型,该解算器使用锐化浸入边界方法来求解较大尺度的粗糙度单元。将从数值和实验两方面考虑三种不同的情况:(I)多尺度粗糙度性质的突变,(Ii)多尺度粗糙度的有限块,以及(Iii)多尺度粗糙度的反复变化。将对数据进行分析,并将模拟和实验进行比较。实验和数值数据以及获得的物理洞察力将用于测试现有的分析模型,并开发新的分析模型,这些模型能够仅基于关于多尺度非均匀表面地形的现有信息来准确预测阻力和动量传递。该项目将加强研究生教育,因为将成为该项目一部分的博士生将在计算方法、建模策略和与实验者的国际合作方面获得大量专业知识。这种培训将是无价的,因为这些方法被广泛认为是未来几十年将大幅增长的领域,其中最需要有经验的研究人员。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comprehensive shear stress analysis of turbulent boundary layer profiles
湍流边界层剖面的综合剪应力分析
- DOI:10.1017/jfm.2019.673
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:Womack, Kristofer M.;Meneveau, Charles;Schultz, Michael P.
- 通讯作者:Schultz, Michael P.
A note on fitting a generalised Moody diagram for wall modelled large-eddy simulations
关于拟合壁建模大涡模拟的广义穆迪图的注意事项
- DOI:10.1080/14685248.2020.1840573
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Meneveau, Charles
- 通讯作者:Meneveau, Charles
Turbulent boundary layer flow over regularly and irregularly arranged truncated cone surfaces
- DOI:10.1017/jfm.2021.946
- 发表时间:2022-01-04
- 期刊:
- 影响因子:3.7
- 作者:Womack, Kristofer M.;Volino, Ralph J.;Schultz, Michael P.
- 通讯作者:Schultz, Michael P.
DISPLACEMENT-THICKNESS BASED RECYCLING INFLOW GENERATION METHOD FOR SPATIALLY DEVELOPING TURBULENT BOUNDARY LAYER SIMULATIONS
基于位移厚度的再循环流入流生成方法用于空间发展湍流边界层模拟
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kumar, Samvit;Mittal, Rajat;Meneveau, Charles
- 通讯作者:Meneveau, Charles
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Meneveau其他文献
An airfoil-based synthetic actuator disk model for wind turbine aerodynamic and structural analysis
基于翼型的风力涡轮机气动和结构分析的合成致动器盘模型
- DOI:
10.1016/j.renene.2025.123780 - 发表时间:
2025-12-15 - 期刊:
- 影响因子:9.100
- 作者:
Muhammad Rubayat Bin Shahadat;Mohammad Hossein Doranehgard;Weibing Cai;Charles Meneveau;Benjamin Schafer;Zheng Li - 通讯作者:
Zheng Li
Multifractality in a nested velocity gradient model for intermittent turbulence
间歇性湍流嵌套速度梯度模型中的多重分形
- DOI:
10.1103/physrevfluids.7.014609 - 发表时间:
2022-01 - 期刊:
- 影响因子:2.7
- 作者:
Yuan Luo;Yipeng Shi;Charles Meneveau - 通讯作者:
Charles Meneveau
Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building
浸没在立方体建筑尾流中的风力涡轮机的大涡模拟
- DOI:
10.1016/j.renene.2020.08.156 - 发表时间:
2021 - 期刊:
- 影响因子:8.7
- 作者:
Mingwei Ge;Dennice F. Gayme;Charles Meneveau - 通讯作者:
Charles Meneveau
Charles Meneveau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Meneveau', 18)}}的其他基金
Research Infrastructure: CC* Data Storage: 20 Petabyte Campus Research Storage Facility at Johns Hopkins University
研究基础设施:CC* 数据存储:约翰霍普金斯大学 20 PB 校园研究存储设施
- 批准号:
2322201 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
Frameworks: Advanced Cyberinfrastructure for Sustainable Community Usage of Big Data from Numerical Fluid Dynamics Simulations
框架:先进的网络基础设施,促进社区可持续利用数值流体动力学模拟中的大数据
- 批准号:
2103874 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
Dynamics of macro-vortices in horizontal axis turbine wind farms
水平轴涡轮风电场宏观涡动力学
- 批准号:
1949778 - 财政年份:2020
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
- 批准号:
1743179 - 财政年份:2018
- 资助金额:
$ 35.89万 - 项目类别:
Continuing Grant
BIGDATA: IA: Democratizing Massive Fluid Flow Simulations via Open Numerical Laboratories and Applications to Turbulent Flow and Geophysical Modeling
BIGDATA:IA:通过开放数值实验室以及湍流和地球物理建模应用使大规模流体流动模拟大众化
- 批准号:
1633124 - 财政年份:2016
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
CDS&E: Studying Multiscale Fluid Turbulence via Open Numerical Laboratories
CDS
- 批准号:
1507469 - 财政年份:2015
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
Collaborative Research: Large-scale kinetic energy entrainment in the wind turbine array boundary layer - understanding and affecting basic flow physics
合作研究:风力涡轮机阵列边界层中的大规模动能夹带 - 理解和影响基本流动物理
- 批准号:
1133800 - 财政年份:2012
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
PIRE: USA/Europe Partnership for Integrated Research and Education in Wind Energy Intermittency: From Wind Farm Turbulence to Economic Management
PIRE:美国/欧洲风能间歇性综合研究和教育合作伙伴关系:从风电场湍流到经济管理
- 批准号:
1243482 - 财政年份:2012
- 资助金额:
$ 35.89万 - 项目类别:
Continuing Grant
Large-Eddy-Simulation Studies and In-situ Observations of Land Atmosphere Exchanges in Large Wind Farms
大型风电场陆地大气交换的大涡模拟研究和现场观测
- 批准号:
1045189 - 财政年份:2011
- 资助金额:
$ 35.89万 - 项目类别:
Continuing Grant
Studying turbulent scale and space interactions using active grid wind tunnel and DNS database experiments
使用主动网格风洞和 DNS 数据库实验研究湍流尺度和空间相互作用
- 批准号:
1033942 - 财政年份:2010
- 资助金额:
$ 35.89万 - 项目类别:
Continuing Grant
相似海外基金
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 35.89万 - 项目类别:
Research Grant
CBET-EPSRC Sustainable bioplastics prepared by ultrasonic treatment with low CO2 footprint
CBET-EPSRC 通过超声波处理制备的可持续生物塑料,二氧化碳足迹低
- 批准号:
EP/X039773/1 - 财政年份:2024
- 资助金额:
$ 35.89万 - 项目类别:
Research Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
- 批准号:
2318618 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
- 批准号:
2318619 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
CBET-EPSRC: Deep Learning Closure Models for Large-Eddy Simulation of Unsteady Aerodynamics
CBET-EPSRC:用于非定常空气动力学大涡模拟的深度学习收敛模型
- 批准号:
EP/X031640/1 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Research Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
- 批准号:
2318617 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
ECO-CBET: GOALI: CAS-Climate: Expediting Decarbonization of Cement Industry through Integration of CO2 Capture and Conversion
ECO-CBET:目标:CAS-气候:通过整合二氧化碳捕获和转化加速水泥行业脱碳
- 批准号:
2219086 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Continuing Grant
Collaborative Research: ECO-CBET: Putting entropy to work: Leveraging the role of water organization in peptide binding events to selectively recover rare earths
合作研究:ECO-CBET:让熵发挥作用:利用水组织在肽结合事件中的作用来选择性回收稀土
- 批准号:
2346163 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Continuing Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
- 批准号:
2318495 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant
ECO-CBET: GOALI: Condensing water from the air for building dehumidification and decarbonization using thermo-responsive desiccants
ECO-CBET:GOALI:使用热敏干燥剂从空气中冷凝水,用于建筑除湿和脱碳
- 批准号:
2318720 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Standard Grant