Collaborative Research: Large-scale kinetic energy entrainment in the wind turbine array boundary layer - understanding and affecting basic flow physics
合作研究:风力涡轮机阵列边界层中的大规模动能夹带 - 理解和影响基本流动物理
基本信息
- 批准号:1133800
- 负责人:
- 金额:$ 29.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1133800 PI Meneveau/1133993 PI CastilloThe objective of this project is to develop and apply experimental and computational tools for predicting and improving wind farm performance by placing particular attention on large scales of turbulence and vertical fluxes of kinetic energy that are of great significance for large arrays of wind turbines. Much effort has been devoted in recent years to increasing the efficiency of individual wind turbines, assuming a given inflow in front of the turbine. Also, understanding how wakes affect the performance of downstream turbines and modeling superpositions of multiple such wakes has received considerable attention; however, there has been relatively little fundamental understanding of how a large array of wind turbines interacts with the turbulent atmospheric boundary layer at larger scales in the wind turbine array boundary layer (WTABL). Recent research has demonstrated that an important performance-limiting factor for large wind farms is the rate at which kinetic energy can be entrained into the array from the flow aloft, above the wind turbines. No matter how efficient an individual wind turbine is, or how well it can adapt to an upstream wind turbine, ultimately it is the vertical flux of kinetic energy into the overall array that largely determines how much power can be extracted from the atmospheric flow. The questions addressed in this project aim at better understanding the limiting factors and the effects of different scales of turbulence on vertical entrainment processes. The resulting models should guide wind turbine placement strategies and possible flow modifications so that vertical entrainment rates can be increased. Specifically, wind tunnel experiments coupled with large-eddy simulations (LES) will be employed to address the following research questions: (a) What are the essential differences between the developing and the fully developed WTABL? (b) What is the relative contribution from streamwise large-scale coherent vortices to vertical entrainment of kinetic energy? (c) What are the space-time correlations of hub-height velocity and power output between different wind turbines in the array? (d) Are there particular arrangements of wind turbines in the array that increase, on average, the entrainment? and (e) Can large-scale flow structures be affected through rotor modifications to increase such entrainment? Addressing such questions requires the ability to experiment under the highly controlled and reproducible conditions that can be afforded in the wind tunnel experiments and computer simulations. The data will be supplemented with comparisons with relevant new field data from a large wind farm. Broader impacts: The robust growth of wind energy implies the possibility that large portions of the land and near-shore surface of the US and the world may ultimately be used for large wind farms. Predicting and better understanding the physical processes coupling the modified surface and atmosphere under such conditions is a timely and critical area of research. Through project activities the PIs will help train the next generation of engineers and scientists with the necessary tools and insights to help reach the US goal of 20% wind energy by 2030. Graduate education/mentoring will stress the interplay between wind tunnel experimentation, computer simulation and field data analysis. International (Switzerland, Spain) and industrial experiences (General Electric) will also be emphasized in this project. Recruiting and outreach will leverage both PIs' ongoing efforts to recruit US Hispanic graduate students through contacts in Puerto Rico (NSF-AGEP and LSAMP), as well as an IGERT at JHU on modeling complex systems. A GK-12 at RPI on energy and environment will leverage NSF resources in training teachers on wind energy issues. The PI's ongoing outreach to a Baltimore high school will be continued, providing research experiences for high-school juniors and seniors.
1133800 PI Meneveau/1133993 PI Castillo该项目的目标是开发和应用实验和计算工具,通过特别关注对大型风力涡轮机阵列具有重要意义的大尺度湍流和动能垂直通量,预测和改善风电场性能。 近年来,假定在涡轮机前面有给定的入流,已经投入了大量的努力来提高单个风力涡轮机的效率。此外,了解尾流如何影响下游涡轮机的性能以及对多个这种尾流的叠加进行建模已经受到了相当大的关注;然而,对于大型风力涡轮机阵列如何在风力涡轮机阵列边界层(WTABL)中以较大尺度与湍流大气边界层相互作用的基本了解相对较少。最近的研究表明,大型风电场的一个重要性能限制因素是动能从风力涡轮机上方的高空气流夹带到阵列中的速率。无论单个风力涡轮机的效率有多高,或者它能多好地适应上游风力涡轮机,最终进入整个阵列的动能的垂直通量在很大程度上决定了能从大气流中提取多少功率。 在这个项目中解决的问题,旨在更好地了解的限制因素和不同尺度的湍流垂直卷吸过程的影响。 由此产生的模型应指导风力涡轮机的位置策略和可能的流量修改,使垂直夹带率可以增加。具体而言,风洞实验加上大涡模拟(LES)将被用来解决以下研究问题:(a)什么是发展和充分发展的WTABL之间的本质区别?(b)流向大尺度相干涡旋对动能垂直夹带的相对贡献是什么?(c)阵列中不同风力涡轮机之间的轮毂高度速度和功率输出的时空相关性是什么?(d)是否有特别安排的风力涡轮机阵列,增加,平均而言,夹带?和(e)通过修改转子以增加这种卷吸,是否会影响大规模的流动结构?解决这些问题需要能够在风洞实验和计算机模拟中可以提供的高度受控和可重复的条件下进行实验。这些数据将通过与来自大型风电场的相关新现场数据进行比较来补充。 更广泛的影响:风能的强劲增长意味着美国和世界的大部分陆地和近岸表面最终可能用于大型风力发电场。预测和更好地了解在这种条件下耦合改性表面和大气的物理过程是一个及时和关键的研究领域。通过项目活动,PI将帮助培训下一代工程师和科学家,提供必要的工具和见解,以帮助实现美国到2030年实现20%风能的目标。 研究生教育/指导将强调风洞实验,计算机模拟和现场数据分析之间的相互作用。国际经验(瑞士、西班牙)和工业经验(通用电气)也将在本项目中得到强调。招聘和推广将利用两个PI的持续努力,通过在波多黎各(NSF-AGEP和LSAMP)的联系,以及在JHU的IGERT对复杂系统建模,招聘美国西班牙裔研究生。RPI关于能源和环境的GK-12将利用NSF资源对教师进行风能问题培训。PI正在进行的外展巴尔的摩高中将继续,为高中三年级和四年级学生提供研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Meneveau其他文献
An airfoil-based synthetic actuator disk model for wind turbine aerodynamic and structural analysis
基于翼型的风力涡轮机气动和结构分析的合成致动器盘模型
- DOI:
10.1016/j.renene.2025.123780 - 发表时间:
2025-12-15 - 期刊:
- 影响因子:9.100
- 作者:
Muhammad Rubayat Bin Shahadat;Mohammad Hossein Doranehgard;Weibing Cai;Charles Meneveau;Benjamin Schafer;Zheng Li - 通讯作者:
Zheng Li
Multifractality in a nested velocity gradient model for intermittent turbulence
间歇性湍流嵌套速度梯度模型中的多重分形
- DOI:
10.1103/physrevfluids.7.014609 - 发表时间:
2022-01 - 期刊:
- 影响因子:2.7
- 作者:
Yuan Luo;Yipeng Shi;Charles Meneveau - 通讯作者:
Charles Meneveau
Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building
浸没在立方体建筑尾流中的风力涡轮机的大涡模拟
- DOI:
10.1016/j.renene.2020.08.156 - 发表时间:
2021 - 期刊:
- 影响因子:8.7
- 作者:
Mingwei Ge;Dennice F. Gayme;Charles Meneveau - 通讯作者:
Charles Meneveau
Charles Meneveau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Meneveau', 18)}}的其他基金
Research Infrastructure: CC* Data Storage: 20 Petabyte Campus Research Storage Facility at Johns Hopkins University
研究基础设施:CC* 数据存储:约翰霍普金斯大学 20 PB 校园研究存储设施
- 批准号:
2322201 - 财政年份:2023
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Frameworks: Advanced Cyberinfrastructure for Sustainable Community Usage of Big Data from Numerical Fluid Dynamics Simulations
框架:先进的网络基础设施,促进社区可持续利用数值流体动力学模拟中的大数据
- 批准号:
2103874 - 财政年份:2021
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Dynamics of macro-vortices in horizontal axis turbine wind farms
水平轴涡轮风电场宏观涡动力学
- 批准号:
1949778 - 财政年份:2020
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: NISC SI2-S2I2 Conceptualization of CFDSI: Model, Data, and Analysis Integration for End-to-End Support of Fluid Dynamics Discovery and Innovation
合作研究:NISC SI2-S2I2 CFDSI 概念化:模型、数据和分析集成,用于流体动力学发现和创新的端到端支持
- 批准号:
1743179 - 财政年份:2018
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
EPSRC-CBET:Turbulent flows over heterogeneous multiscale surfaces
EPSRC-CBET:异质多尺度表面上的湍流
- 批准号:
1738918 - 财政年份:2017
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
BIGDATA: IA: Democratizing Massive Fluid Flow Simulations via Open Numerical Laboratories and Applications to Turbulent Flow and Geophysical Modeling
BIGDATA:IA:通过开放数值实验室以及湍流和地球物理建模应用使大规模流体流动模拟大众化
- 批准号:
1633124 - 财政年份:2016
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
CDS&E: Studying Multiscale Fluid Turbulence via Open Numerical Laboratories
CDS
- 批准号:
1507469 - 财政年份:2015
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
PIRE: USA/Europe Partnership for Integrated Research and Education in Wind Energy Intermittency: From Wind Farm Turbulence to Economic Management
PIRE:美国/欧洲风能间歇性综合研究和教育合作伙伴关系:从风电场湍流到经济管理
- 批准号:
1243482 - 财政年份:2012
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Large-Eddy-Simulation Studies and In-situ Observations of Land Atmosphere Exchanges in Large Wind Farms
大型风电场陆地大气交换的大涡模拟研究和现场观测
- 批准号:
1045189 - 财政年份:2011
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Studying turbulent scale and space interactions using active grid wind tunnel and DNS database experiments
使用主动网格风洞和 DNS 数据库实验研究湍流尺度和空间相互作用
- 批准号:
1033942 - 财政年份:2010
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
- 批准号:
2322601 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317938 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344260 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 29.48万 - 项目类别:
Standard Grant














{{item.name}}会员




