BIGDATA: IA: Collaborative Research: From Bytes to Watts - A Data Science Solution to Improve Wind Energy Reliability and Operation

BIGDATA:IA:协作研究:从字节到瓦特 - 提高风能可靠性和运行的数据科学解决方案

基本信息

  • 批准号:
    1741173
  • 负责人:
  • 金额:
    $ 74.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

The collective efforts in aerospace, civil, electrical, and mechanical engineering areas have led to remarkable progresses in wind energy. Larger turbines are designed and installed, and wind farms are nowadays built at locations where wind is even more intermittent and maintenance equipment is less accessible. This adds new challenges to ensuring operational reliability. To cope with these challenges, along with the rapid advancement in microelectronics, modern wind farms are equipped with a large number and variety of sensors, including, at the turbine level, anemometers, tachometers, accelerometers, thermometers, strain sensors, and power meters, and at the farm level, anemometers, vanes, sonars, thermometers, humidity meters, pressure meters, among others. It is worth noting that all these data are currently analyzed/utilized only in their respective domains. The big data challenges in this project include how to best use spatio-temporal data for wind forecast, how to use data of different nature (wind, power, load etc.) and data of different sources (physical data versus computer simulation data) for power production assessment in a computationally efficient manner, and finally how to integrate these three sets of solutions into a reliable and efficient computational platform. The proposed research and education activities will make a paradigm shift in the wind industry by demonstrating how dramatically data science innovations can benefit the industry. The PIs will disseminate the research findings through classroom teaching, journal/conference publications, industry workshops, and data/software sharing. The summer internship opportunities and undergraduate research help train the next generation workforce to be better versed with data science methodologies.The critical barrier to cost effective wind power and its general adoption is partly rooted in wind stochasticity, severely complicating wind power production optimization and cost reduction. The long-term viability of wind energy hinges upon a good understanding of its production reliability, which is affected in turn by the predictability of wind and power productivity of wind turbines. Furthermore, the productivity of a wind turbine comprises two aspects: its ability of converting wind into power during its operation and the availability of wind turbines. Three inter-related research efforts will enhance wind energy reliability and productivity): (1) spatio-temporal analysis (for wind forecast) (2) conditional density estimation (for wind-to-power conversion assessment); and (3) importance sampling (for turbine reliability assessment and improvement). Significant data resourced provided by industry partners in the research, coupled with models and computational resources, will enable better prediction of wind profiles and utilization. In addition, the team will develop dedicated reconfigurable field programmable gate array (FPGA) processors that will be 50 to 500 times faster than general-purpose CPUs for both on-site and central control processing and have small form-factor, low cost and energy efficient to enable agile development under severe outdoor conditions at wind farms.
航空航天、土木、电气和机械工程领域的共同努力使风能取得了显著进展。设计和安装更大的涡轮机,风力发电场现在建在风力更加间歇性和维护设备更难以获得的地方。这给确保操作可靠性带来了新的挑战。为了应对这些挑战,随着微电子技术的快速发展,现代风电场配备了大量和各种各样的传感器,包括在涡轮机级别,风速计,转速计,加速度计,温度计,应变传感器和功率计,以及在农场级别,风速计,叶片,声纳,温度计,湿度计,压力表等。值得注意的是,所有这些数据目前只在各自的领域进行分析/利用。本项目面临的大数据挑战包括如何更好地利用时空数据进行风力预报,如何以高效的计算方式利用不同性质的数据(风、电、负荷等)和不同来源的数据(物理数据与计算机模拟数据)进行发电评估,以及如何将这三套解决方案整合成一个可靠、高效的计算平台。拟议的研究和教育活动将通过展示数据科学创新如何极大地造福该行业,从而在风能行业实现范式转变。pi将通过课堂教学、期刊/会议出版物、行业研讨会和数据/软件共享来传播研究成果。暑期实习机会和本科研究有助于培养下一代劳动力更好地精通数据科学方法。风力发电的成本效益及其普遍采用的关键障碍部分源于风力的随机性,这使风力发电的生产优化和成本降低变得非常复杂。风能的长期可行性取决于对其生产可靠性的良好理解,而这又受到风力的可预测性和风力涡轮机的功率生产率的影响。此外,风力涡轮机的生产力包括两个方面:在其运行期间将风力转化为电力的能力和风力涡轮机的可用性。三个相互关联的研究工作将提高风能的可靠性和生产力:(1)时空分析(用于风力预报);(2)条件密度估算(用于风电转换评估);(3)重要性抽样(用于汽轮机可靠性评估和改进)。行业合作伙伴在研究中提供的重要数据资源,加上模型和计算资源,将能够更好地预测风廓线和利用情况。此外,该团队将开发专用的可重构现场可编程门阵列(FPGA)处理器,该处理器将比现场和中央控制处理的通用cpu快50到500倍,并且具有小尺寸、低成本和高能效,能够在风电场恶劣的室外条件下实现敏捷开发。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of alternative power production efficiency metrics for offshore wind turbines and farms
  • DOI:
    10.1016/j.renene.2018.05.050
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    B. Niu;Hoon Hwangbo;L. Zeng;Yu Ding
  • 通讯作者:
    B. Niu;Hoon Hwangbo;L. Zeng;Yu Ding
Dynamic Heterogeneous Voltage Regulation for Systolic Array-Based DNN Accelerators
基于脉动阵列的 DNN 加速器的动态异构电压调节
Wind Turbine Gearbox Failure Detection Through Cumulative Sum of Multivariate Time Series Data
  • DOI:
    10.3389/fenrg.2022.904622
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    E. Latiffianti;S. Sheng;Yu Ding
  • 通讯作者:
    E. Latiffianti;S. Sheng;Yu Ding
Analysis of leading edge protection application on wind turbine performance through energy and power decomposition approaches
通过能量和功率分解方法分析风力涡轮机性能的前沿保护应用
  • DOI:
    10.1002/we.2722
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Latiffianti, Effi;Ding, Yu;Sheng, Shawn;Williams, Lindy;Morshedizadeh, Majid;Rodgers, Marianne
  • 通讯作者:
    Rodgers, Marianne
A Scalable FPGA Engine for Parallel Acceleration of Singular Value Decomposition
用于并行加速奇异值分解的可扩展 FPGA 引擎
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Ding其他文献

A Novel Multi-vector Model Predictive Current Control of Three-Phase Active Power Filter
一种新型的三相有源电力滤波器多矢量模型预测电流控制
The Mitochondrial ND1 3308T>C Mutation May Not Be Associated with Left Ventricular Hypertrabeculation/Noncompaction
线粒体 ND1 3308T>C 突变可能与左心室小梁过度/致密化不相关
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Ding;Hua Zhu
  • 通讯作者:
    Hua Zhu
Critical reassessment of a five-generation Chinese family carrying deafness-associated mitochondrial 1555A>G mutation
对携带耳聋相关线粒体 1555A>G 突变的五代中国家庭进行严格重新评估
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Yu Ding;Jianhang Leng;Jing Zheng
  • 通讯作者:
    Jing Zheng
Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases
生物活性肽和肠道微生物群:减少和控制神经退行性疾病新策略的候选者
  • DOI:
    10.1016/j.tifs.2020.12.019
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    15.3
  • 作者:
    Shujian Wu;Alaa El-Din Ahmed Bekhit;Qingping Wu;Mengfei Chen;Xiyu Liao;Juan Wang;Yu Ding
  • 通讯作者:
    Yu Ding
State Space Modeling for Size Changes
尺寸变化的状态空间建模

Yu Ding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Ding', 18)}}的其他基金

CPS/Synergy/Collaborative Research: Cybernizing Mechanical Structures through Integrated Sensor-Structure Fabrication
CPS/协同/协作研究:通过集成传感器结构制造实现机械结构的网络化
  • 批准号:
    1545038
  • 财政年份:
    2016
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: A System-Level Framework for Operation and Maintenance: Synergizing Near and Long Term Cares for Wind Turbines
GOALI/协作研究:运行和维护的系统级框架:协同风力涡轮机的近期和长期维护
  • 批准号:
    1300560
  • 财政年份:
    2013
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-Accuracy Bayesian Models for Improving Property Prediction of Nanotube Buckypaper Composites
合作研究:用于改进纳米管巴基纸复合材料性能预测的多精度贝叶斯模型
  • 批准号:
    1000088
  • 财政年份:
    2010
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient Probabilistic Approach Using Order Reduction and Hybrid Models -- A New Paradigm for Structural Dynamic Analysis
协作研究:使用降阶和混合模型的高效概率方法——结构动态分析的新范式
  • 批准号:
    0926803
  • 财政年份:
    2009
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fault Tolerance Analysis and Design of Clustered Sensor Networks
协作研究:集群传感器网络容错分析与设计
  • 批准号:
    0727305
  • 财政年份:
    2007
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
DDDAS - SMRP: A Framework For the Dynamic Data-Driven Fault Diagnosis of Wind Turbine Systems
DDDAS - SMRP:风力涡轮机系统动态数据驱动故障诊断框架
  • 批准号:
    0540132
  • 财政年份:
    2006
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
CAREER: Collaborative Information Processing of Distributed Sensor Networks for Manufacturing Quality Improvement
职业:分布式传感器网络的协作信息处理以提高制造质量
  • 批准号:
    0348150
  • 财政年份:
    2004
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
SST: Robust Wireless Piezoelectric Sensor Network for Structural Health Monitoring
SST:用于结构健康监测的强大无线压电传感器网络
  • 批准号:
    0427878
  • 财政年份:
    2004
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
Collaborative Research/GOALI: Analysis and Optimization Method for Distributed Sensor Systems in Electronics Assembly Processes Systems
协作研究/GOALI:电子装配过程系统中分布式传感器系统的分析和优化方法
  • 批准号:
    0217481
  • 财政年份:
    2002
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant

相似国自然基金

多任务深度学习融合多模态数据术前精准预测IA期非小细胞肺癌亚肺叶切除术复发风险
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Ia型超新星多波段实测特性及其机理研究
  • 批准号:
    JCZRYB202500270
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Ia型超新星及相关特殊天体研究
  • 批准号:
    12333008
  • 批准年份:
    2023
  • 资助金额:
    239.00 万元
  • 项目类别:
    重点项目
南方根结线虫Mi-UNP与Bt-Cry1Ia36互作研究及其功能分析
  • 批准号:
    2023JJ30355
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
胞苷脱氨酶调控南方根结线虫响应Bt-Cry1Ia 胁迫的机制研究
  • 批准号:
    2022JJ40235
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
甘蓝型油菜BnaA01.IA调控花序结构的分子机制解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
年轻Ia型超新星遗迹在湍动背景场中的数值模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ia型超新星抛射物元素丰度与时域观测特征相关性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-23a~27a簇介导DNMT调控PD-L1和HLA-Ia表达促进早期肺腺癌复发的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
大豆GmCPSF73-Ia调控侧根发育的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    2308649
  • 财政年份:
    2022
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838022
  • 财政年份:
    2019
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
  • 批准号:
    1947584
  • 财政年份:
    2019
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837964
  • 财政年份:
    2019
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837956
  • 财政年份:
    2019
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
  • 批准号:
    1838024
  • 财政年份:
    2019
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    1837999
  • 财政年份:
    2019
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Domain Adaptation Approaches for Classifying Crisis Related Data on Social Media
大数据:IA:协作研究:社交媒体上危机相关数据分类的领域适应方法
  • 批准号:
    1741370
  • 财政年份:
    2018
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
BIGDATA: IA: Collaborative Research: Data-Driven, Multi-Scale Design of Liquid Crystals for Wearable Sensors for Monitoring Human Exposure and Air Quality
大数据:IA:协作研究:用于监测人体暴露和空气质量的可穿戴传感器的数据驱动、多尺度液晶设计
  • 批准号:
    1837821
  • 财政年份:
    2018
  • 资助金额:
    $ 74.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了