EAGER: Collaborative: Understanding and Modeling Rumor Propagation for Vulnerability Assessment of Social Media Platforms
EAGER:协作:理解和建模谣言传播以进行社交媒体平台的漏洞评估
基本信息
- 批准号:1742847
- 负责人:
- 金额:$ 7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As social media becomes a primary news source, rumors can spread widely in a short time. In recent cases, the rapid spread of misinformation caused social panic, had a dramatic financial impact, and put individuals and communities at great risk. Even when correct information is eventually disseminated, large delays can have devastating consequences. To determine how vulnerable networks are to misinformation spread, and to develop effective proactive and reactive counter-measures, it is necessary to study rumor propagation. However, rumor propagation is challenging to model and capture due to its dynamic complexity and self-sustaining nature.The rapid diffusion of rumors across online social networks is influenced by numerous factors from both local (user forwarding behavior) and global (network diffusion) perspectives. Diffusion depends on each user's local decision about whether to propagate the information or not. That decision is related to factors including trust relationships, information provenance, and content. Diffusion also depends on the global topology of networks, how users are interconnected, as well as the rate at which users propagate the content. From this global point of view, characterizing rumor propagation across networks requires accurate yet tractable mathematical models of diffusion. This project investigates rumor diffusion via social media from these two perspectives. The integration of social psychological and computer science methodologies in this project reveals propagation patterns in large-scale networks and the psychological motivations driving user behavior. This project contributes to better monitoring, detection, and ultimately prevention of the propagation of misinformation that undermines social stability and national security. Research and training opportunities are offered to students across multiple fields, including computer science, engineering, and social science.
随着社交媒体成为主要的新闻来源,谣言可以在短时间内广泛传播。在最近的案例中,错误信息的迅速传播引起了社会恐慌,产生了巨大的经济影响,并使个人和社区处于巨大的风险之中。即使最终传播了正确的信息,大量的延误也会造成毁灭性的后果。为了确定网络对错误信息传播的脆弱性,并制定有效的主动和被动应对措施,有必要对谣言传播进行研究。然而,由于谣言传播的动态复杂性和自持性,对其建模和捕获具有挑战性。从本地(用户转发行为)和全球(网络扩散)的角度来看,谣言在在线社交网络中的快速传播受到许多因素的影响。扩散取决于每个用户对是否传播信息的本地决策。这一决定与信任关系、信息来源和内容等因素有关。传播还取决于网络的全局拓扑结构,用户如何相互连接,以及用户传播内容的速度。从这个全局的角度来看,表征谣言在网络上的传播需要准确而易于处理的传播数学模型。本项目从这两个角度来研究谣言在社交媒体上的传播。在这个项目中,社会心理学和计算机科学方法的整合揭示了大规模网络中的传播模式和驱动用户行为的心理动机。该项目有助于更好地监测、发现并最终防止破坏社会稳定和国家安全的错误信息的传播。研究和培训的机会提供给学生跨多个领域,包括计算机科学,工程和社会科学。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localizing the Information Source in a Network
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:3
- 作者:G. Nie;Christoper Quinn
- 通讯作者:G. Nie;Christoper Quinn
Stochastic Top-$K$ Subset Bandits with Linear Space and Non-Linear Feedback
具有线性空间和非线性反馈的随机 Top-$K$ 子集老虎机
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Agarwal, Mridul;Aggarwal, Vaneet;Quinn, Christopher J.;Umrawal, Abhishek K.
- 通讯作者:Umrawal, Abhishek K.
DART: Adaptive Accept Reject Algorithm for Non-Linear Combinatorial Bandits
DART:非线性组合老虎机的自适应接受拒绝算法
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Agarwal, Mridul;Aggarwal, Vaneet;Umrawal, Abhishek K.;Quinn, Christopher J.
- 通讯作者:Quinn, Christopher J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gesualdo Scutari其他文献
Gesualdo Scutari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gesualdo Scutari', 18)}}的其他基金
CIF:Small:Collaborative Research:Distributed Fog Computing for Non-Convex Big-Data Analytics
CIF:小:协作研究:用于非凸大数据分析的分布式雾计算
- 批准号:
1719205 - 财政年份:2017
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
CIF: Collaborative Research: Parallel Online Algorithms for Large-Scale MRI
CIF:协作研究:大规模 MRI 的并行在线算法
- 批准号:
1514403 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Communicating While Computing: Mobile Fog Computing Over Wireless Heterogeneous Networks
CIF:小型:协作研究:计算时通信:无线异构网络上的移动雾计算
- 批准号:
1564044 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
CAREER:Variational Inequalities: A New Paradigm for Cognitive Network Layering
职业:变分不等式:认知网络分层的新范式
- 批准号:
1555850 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Communicating While Computing: Mobile Fog Computing Over Wireless Heterogeneous Networks
CIF:小型:协作研究:计算时通信:无线异构网络上的移动雾计算
- 批准号:
1527625 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Parallel Online Algorithms for Large-Scale MRI
CIF:小型:协作研究:大规模 MRI 的并行在线算法
- 批准号:
1632599 - 财政年份:2015
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
CAREER:Variational Inequalities: A New Paradigm for Cognitive Network Layering
职业:变分不等式:认知网络分层的新范式
- 批准号:
1254739 - 财政年份:2013
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
NeTS: Small: Toward Distributed Decision Making in Cognitive Radio Ad-hoc Networks Based on Bilevel Equilibrium Programming
NeTS:小型:基于双层均衡规划的认知无线电自组织网络中的分布式决策
- 批准号:
1218717 - 财政年份:2012
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
- 批准号:
2334386 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
- 批准号:
2334385 - 财政年份:2023
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Understanding User Needs for Access Control Systems in Smart Settings
合作研究:EAGER:了解智能设置中访问控制系统的用户需求
- 批准号:
2219921 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Understanding User Needs for Access Control Systems in Smart Settings
合作研究:EAGER:了解智能设置中访问控制系统的用户需求
- 批准号:
2219920 - 财政年份:2022
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Understanding Privacy Violations of Racial and Ethnic Minorities in Online Photo Sharing
合作研究:EAGER:了解在线照片共享中少数种族和族裔的隐私侵犯行为
- 批准号:
2124533 - 财政年份:2021
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Understanding Privacy Violations of Racial and Ethnic Minorities in Online Photo Sharing
合作研究:EAGER:了解在线照片共享中少数种族和族裔的隐私侵犯行为
- 批准号:
2124741 - 财政年份:2021
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
- 批准号:
2029860 - 财政年份:2020
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Understanding Human Behaviors and Mental Health using Federated Machine Learning on Smart Phones
EAGER:协作研究:使用智能手机上的联合机器学习了解人类行为和心理健康
- 批准号:
2041096 - 财政年份:2020
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Understanding Human Behaviors and Mental Health using Federated Machine Learning on Smart Phones
EAGER:协作研究:使用智能手机上的联合机器学习了解人类行为和心理健康
- 批准号:
2041065 - 财政年份:2020
- 资助金额:
$ 7万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
- 批准号:
1937088 - 财政年份:2019
- 资助金额:
$ 7万 - 项目类别:
Standard Grant














{{item.name}}会员




