CAREER:Variational Inequalities: A New Paradigm for Cognitive Network Layering
职业:变分不等式:认知网络分层的新范式
基本信息
- 批准号:1555850
- 负责人:
- 金额:$ 29.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Objective. The goal of this project is to progress towards a systematic and better understanding of distributed cognitive layering and consequent network architecture decompositions, based on the advanced theory of Variational Inequalities. The ultimate objective is developing a new methodology to formulate, study, and solve in a distributed way generic cross-layer designs of cognitive ad-hoc networks (including the optimization of the sensing process), building on a novel framework that collectively is termed hierarchical Variational Inequalities. Intellectual Merit. The theory of Variational Inequalities provides a broad mathematical framework for a host of formulations of practical interest, such as classical nonlinear optimization, equilibrium, and game-theoretic problems. The proposed hierarchical Variational Inequality problem offers thus a constructive and powerful platform to investigate several novel cross-layer designs, and provides an alternative and promising direction to deal with the fundamental issues of traditional NUM designs.Broader Impact. Success in the proposed research effort has the potential to change how to teach and design cognitive wireless networks. This research will enable efficient, rigorous, and cost-effective new approaches for the design of complex networks, which will represent a shift from current heuristic based approaches. Moreover, bringing for the first time Variational Inequalities in engineering disciplines, the project will promote cross-fertilization among different research fields, such as signal processing, optimization, game and decision theory, and networking, offering to researchers in these communities a constructive and powerful platform for fruitful developments. The research project is well rounded by a complementary educational program that targets both undergraduate and graduate students.
客观的。 该项目的目标是基于先进的变分不等式理论,进一步系统地、更好地理解分布式认知分层和随后的网络架构分解。最终目标是开发一种新的方法,以分布式方式制定、研究和解决认知自组织网络的通用跨层设计(包括感知过程的优化),建立在统称为分层变分不等式的新颖框架之上。智力优点。变分不等式理论为许多具有实际意义的公式提供了广泛的数学框架,例如经典的非线性优化、均衡和博弈论问题。 因此,所提出的分层变分不等式问题为研究几种新颖的跨层设计提供了一个建设性且强大的平台,并为处理传统 NUM 设计的基本问题提供了一个替代且有前途的方向。更广泛的影响。拟议研究工作的成功有可能改变认知无线网络的教学和设计方式。这项研究将为复杂网络的设计提供高效、严格且具有成本效益的新方法,这将代表当前基于启发式方法的转变。此外,该项目首次将变分不等式引入工程学科,将促进信号处理、优化、博弈与决策理论、网络等不同研究领域之间的交叉融合,为这些领域的研究人员提供一个建设性的、强大的平台,以取得富有成果的发展。该研究项目通过针对本科生和研究生的补充教育计划得到了完善。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feasible methods for nonconvex nonsmooth problems with applications in green communications
- DOI:10.1007/s10107-016-1072-9
- 发表时间:2016-10
- 期刊:
- 影响因子:2.7
- 作者:F. Facchinei;Lorenzo Lampariello;G. Scutari
- 通讯作者:F. Facchinei;Lorenzo Lampariello;G. Scutari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gesualdo Scutari其他文献
Gesualdo Scutari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gesualdo Scutari', 18)}}的其他基金
EAGER: Collaborative: Understanding and Modeling Rumor Propagation for Vulnerability Assessment of Social Media Platforms
EAGER:协作:理解和建模谣言传播以进行社交媒体平台的漏洞评估
- 批准号:
1742847 - 财政年份:2017
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
CIF:Small:Collaborative Research:Distributed Fog Computing for Non-Convex Big-Data Analytics
CIF:小:协作研究:用于非凸大数据分析的分布式雾计算
- 批准号:
1719205 - 财政年份:2017
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
CIF: Collaborative Research: Parallel Online Algorithms for Large-Scale MRI
CIF:协作研究:大规模 MRI 的并行在线算法
- 批准号:
1514403 - 财政年份:2015
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Communicating While Computing: Mobile Fog Computing Over Wireless Heterogeneous Networks
CIF:小型:协作研究:计算时通信:无线异构网络上的移动雾计算
- 批准号:
1564044 - 财政年份:2015
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Communicating While Computing: Mobile Fog Computing Over Wireless Heterogeneous Networks
CIF:小型:协作研究:计算时通信:无线异构网络上的移动雾计算
- 批准号:
1527625 - 财政年份:2015
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Parallel Online Algorithms for Large-Scale MRI
CIF:小型:协作研究:大规模 MRI 的并行在线算法
- 批准号:
1632599 - 财政年份:2015
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
CAREER:Variational Inequalities: A New Paradigm for Cognitive Network Layering
职业:变分不等式:认知网络分层的新范式
- 批准号:
1254739 - 财政年份:2013
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
NeTS: Small: Toward Distributed Decision Making in Cognitive Radio Ad-hoc Networks Based on Bilevel Equilibrium Programming
NeTS:小型:基于双层均衡规划的认知无线电自组织网络中的分布式决策
- 批准号:
1218717 - 财政年份:2012
- 资助金额:
$ 29.13万 - 项目类别:
Standard Grant
相似海外基金
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2022
- 资助金额:
$ 29.13万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2022
- 资助金额:
$ 29.13万 - 项目类别:
Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2021
- 资助金额:
$ 29.13万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2021
- 资助金额:
$ 29.13万 - 项目类别:
Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2020
- 资助金额:
$ 29.13万 - 项目类别:
Discovery Grants Program - Individual
A new refinement allowing infinite-order degeneration and explosion of weighted classical inequalities and its application to variational problems
允许加权经典不等式的无限阶退化和爆炸的新改进及其在变分问题中的应用
- 批准号:
20K03670 - 财政年份:2020
- 资助金额:
$ 29.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2020
- 资助金额:
$ 29.13万 - 项目类别:
Discovery Grants Program - Individual
Variational problems associated with best constants of functional inequalities in a limiting case
极限情况下与函数不等式最佳常数相关的变分问题
- 批准号:
19K14568 - 财政年份:2019
- 资助金额:
$ 29.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2015-05436 - 财政年份:2019
- 资助金额:
$ 29.13万 - 项目类别:
Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2019
- 资助金额:
$ 29.13万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




