EAGER: Collaborative: A Criminology-Based Simulation of Dynamic Adversarial Behavior in Cyberattacks
EAGER:协作:基于犯罪学的网络攻击中动态对抗行为模拟
基本信息
- 批准号:1742789
- 负责人:
- 金额:$ 14.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 2016, the cyberthreat landscape showcased advanced attack techniques, escalated attack frequency, and high levels of adversarial sophistication. Conventional cyberattack management is response-driven, with organizations focusing their efforts on detecting threats, rather than anticipating adversarial actions. This reactive approach has limited efficacy, as it does not capture advanced and sophisticated adversaries, mutating or unknown malware, living-off-the-land techniques or new variants being deployed. There is thus an immediate need for a paradigm shift in the area of cybersecurity. Security experts are calling for anticipatory or proactive defense measures that focus on adversarial behavior and movement. This research aims to develop a criminological theory that captures the dynamics of cybercrime and a corresponding simulator to generate attack scenarios that adapts to ever changing and diverse cyber vulnerabilities, defense, and adversary tactics. This research has two connected objectives: (1) Develop (and evaluate) an integrated Dynamic Routine Activities Theory (DRAT), which examines the continually changing interaction between offender, target, and guardian (OTG) along cyberattack trajectories aided by Monte-Carlo simulation; and (2) Understand how variations in OTG impact dynamic adversarial attack trajectories. Specifically, how can these variations and amounts of variations be measured, modeled and simulated, and what might these variations imply for DRAT -- Understanding adversarial attack trajectories, and how these can be disrupted to impact adversaries, will be instrumental in comprehending anticipatory cyber defense and ultimately contribute to the paradigm shift towards proactive cybersecurity. This exploratory, multidisciplinary research marries the two disciplines of criminology and computer engineering to push the research frontier on proactive cybersecurity. This groundbreaking intersection will generate new criminological theoretical knowledge, mixed-method innovations, and theoretically-informed simulation that prepare defenders with preemptive and comprehensive knowledge and tools in facing adaptive and sophisticated adversaries.
2016年,网络威胁领域展示了先进的攻击技术、不断升级的攻击频率和高水平的对抗复杂性。传统的网络攻击管理是响应驱动的,组织将精力集中在检测威胁上,而不是预测对抗行动。这种反应性方法的效果有限,因为它不能捕获高级和复杂的对手、变异或未知的恶意软件、离线技术或正在部署的新变体。因此,迫切需要在网络安全领域进行范式转变。安全专家呼吁采取预先或积极的防御措施,重点关注敌对行为和行动。本研究旨在发展一种犯罪学理论,捕捉网络犯罪的动态和相应的模拟器,以生成适应不断变化和多样化的网络漏洞、防御和对手战术的攻击场景。本研究有两个相互关联的目标:(1)发展(并评估)一个集成的动态常规活动理论(DRAT),该理论在蒙特卡洛模拟的帮助下,沿着网络攻击轨迹研究罪犯、目标和监护人(OTG)之间不断变化的相互作用;(2)了解OTG的变化如何影响动态对抗性攻击轨迹。具体来说,这些变化和变化的数量如何被测量、建模和模拟,以及这些变化对DRAT的影响——理解对抗性攻击轨迹,以及如何破坏这些轨迹以影响对手,将有助于理解预期的网络防御,并最终有助于向主动网络安全的范式转变。这项探索性的多学科研究结合了犯罪学和计算机工程两个学科,推动了主动网络安全的研究前沿。这个开创性的交叉点将产生新的犯罪学理论知识,混合方法创新和理论信息模拟,为防御者准备先发制人和全面的知识和工具,以面对适应性和复杂的对手。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthetic Intrusion Alert Generation through Generative Adversarial Networks
通过生成对抗网络生成合成入侵警报
- DOI:10.1109/milcom47813.2019.9020850
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Sweet, C.;Moskal, S.;Yang, S. J.
- 通讯作者:Yang, S. J.
Dissecting Cyberadversarial Intrusion Stages via Interdisciplinary Observations
通过跨学科观察剖析网络对抗入侵阶段
- DOI:10.1145/3375708.3380317
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Rege, A.
- 通讯作者:Rege, A.
SoK: Contemporary Issues and Challenges to Enable Cyber Situational Awareness for Network Security
SoK:实现网络安全网络态势感知的当代问题和挑战
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Husák, M.;Jirsik, T.;Yang, S. J.
- 通讯作者:Yang, S. J.
Session-level Adversary Intent-Driven Cyberattack Simulator
会话级对手意图驱动的网络攻击模拟器
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Drasar, M.;Moskal, S.;Yang, S. J.;Zaťko, P.
- 通讯作者:Zaťko, P.
On the Variety and Veracity of Cyber Intrusion Alerts Synthesized by Generative Adversarial Networks
关于生成对抗网络合成的网络入侵警报的多样性和准确性
- DOI:10.1145/3394503
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Sweet, Christopher Ryan;Moskal, Stephen;Yang, Shanchieh
- 通讯作者:Yang, Shanchieh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shanchieh Yang其他文献
Advancing hierarchical neural networks with scale-aware pyramidal feature learning for medical image dense prediction
通过具有尺度感知的金字塔特征学习推进分层神经网络用于医学图像密集预测
- DOI:
10.1016/j.cmpb.2025.108705 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:4.800
- 作者:
Xiang Liu;James Liang;Jianwei Zhang;Zihan Qian;Phoebe Xing;Taige Chen;Shanchieh Yang;Chijioke Chukwudi;Liang Qiu;Dongfang Liu;Junhan Zhao - 通讯作者:
Junhan Zhao
Shanchieh Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shanchieh Yang', 18)}}的其他基金
Collaborative Research: SaTC: EDU: Dual-track Role-based Learning for Cybersecurity Analysts and Engineers for Effective Defense Operation with Data Analytics
协作研究:SaTC:EDU:网络安全分析师和工程师基于角色的双轨学习,通过数据分析实现有效的防御操作
- 批准号:
2228001 - 财政年份:2023
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Transatlantic (US-NI-RoI) Workshop on Collaborative IoT/CPS Research Opportunities – Security and Trust Beyond Hardening
跨大西洋 (US-NI-RoI) 协作物联网/CPS 研究机会研讨会 – 超越强化的安全与信任
- 批准号:
2049960 - 财政年份:2020
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
TWC: TTP Option: Small: Automating Attack Strategy Recognition to Enhance Cyber Threat Prediction
TWC:TTP 选项:小:自动化攻击策略识别以增强网络威胁预测
- 批准号:
1526383 - 财政年份:2015
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
AHRC Collaborative Doctoral Partnership Coordination Group
AHRC 合作博士伙伴协调小组
- 批准号:
AH/Z505778/1 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Research Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 14.96万 - 项目类别:
Standard Grant